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B 0 — ,00 ,U—I_ ,u_ - Motivation “}

B — p’ut le of -

o is an example of a % \
b = d Flavour Changing Neutral Tve
Current (FCNC) process

o FCNCs can only occur at loop level
within the Standard Model (SM)

o Off shell > Sensitive to up to b
A100TeV) energy scale

o New Physics (NP) could enter
these processes at the loop level d
and effect physical observables
such as BFs, angular observables.

o As a b - dtransition suppressed
by small size of Vid meaning
more suppressed than similar

b = s transitions
T




b—> s processes at LHCb

o Large number of analyses on processes involving b - s transitions. Several
interesting tensions found so far between measurements and SM predictions:

[LHCb,JHEP 06 (2014) 133] [LHCb. JHEP 02 (2016) 104] [arXiv:1903.09252]
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than SM predictions

o Perhaps point to NP contribution that destructively interferes with SM. Want to
probe flavour structure of NP and see if also present in b - d decays



https://doi.org/10.1007/JHEP06(2014)133

BO — IOO/L_I_/L_ - Run 1 analysis

o Previous branching fraction analysis using only Run 1 data completed by LHCb
[Phys. Lett. B743 (2015) 46]

o Measured BFs:

BB = ntn~pTp™) = (2.1 £0.5(stat) £ 0.7(system) &+ 0.7(norm)) x 107%| 4.8¢
B(BY = ntr ™) = (8.6 £ 1.5(stat) £ 0.7(syst) £ 0.7(norm)) x 107%| |[7.20
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UPDATED ANALYSIS — aims and strategy

o Perform and improve BF Analysis of the B® mode using Run 1 + 2015 + 2016
data -- perform differential BF measurement in bins of q2— with improved
selection methods should provide first observation

o Use control mode B’ — K*.J/1 to normalise the signal and as a large yield proxy

N(B® = p%utu™)  e(B°— K*J/¢)
N(BY = K*0J/)  e(B° — poptp-)

BB — p°ut ™) = B(BY = K*J /) x

CHALLENGES:

1. Monte Carlo inaccuracies: MC reweighted in kinematic variables and with helicity
models

2. Combinatorial Background: Multi Variate Analysis (MVA)

3. Signal underneath large peaking backgrounds e.g. B — K*u "~

: PID cut selection using toy study — use tight PID cuts as trying to find rare mode

4. Rare mode confirmation: Show that the 77~ state originates from o in order to
compare to SM predictions — mass fits and fits to angular variables

5. Angular Analysis: Calculate angular observables sensitive to interesting

observables 5



Pre-selection MC Corrections

« MC used throughout analysis: MVA, mass shapes, efficiencies
= MC/Data agreement is crucial

2
« MC initially reweighted in B® P, B® vertex X and occupancy which are known to
be poorly modelled. = Use sPlot technique to unfold signal using fit to

control mode B® — K*°.J /4
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https://doi.org/10.1103/PhysRevD.90.012003
https://doi.org/10.1103/PhysRevD.89.092006

Multivariate Analysis (MVA)

o MVA used to reduce Combinatorial background

o Initially compared performance of several classifiers, xGBoost (Gradient Boosted
Decision Tree) produced best performance

o UseB’ — p’utu~ MC as signal proxy and upper S|deband of data
( m(7r7r,u,u) > 5800 MeV) as background proxy —
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PID VS BDT OPTIMISATION

o Largem™ — K misid backgrounds present in the analysis reduced with PID cuts
PID vs BDT working point determined using optimisation with a toy study

o For different PID and BDT cuts fit resonant.J/v) mode and calculate expected

yields with control mode to generate 1000 toys
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o Calculate significance

using Wilk's theorem

Flattened BDT cut

o See peak in significance with

optimal cuts corresponding to —
5.60 Run 1 and 6.40 Run 2.
c.f. Run 1 analysis 4.80 9



CONTROL MODE FIT

o BY — K*°.J/v used as control mode due to clean signal and large yield

o Control mode used for normalisation within the BF calculation to cancel
systematics

o Fitis very good for both Run 1 and Run 2 with a pure signal.
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RESONANT MODE FIT

o Use pJ/v mode as a proxy to determine PDF shapes as most peaking

backagrounds for rare mode are also present here
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o Fit version with Jpsi mass constrained to known
value to help separate peaks. Find consistent fits

without the mass constraint.

o Peaking backgrounds still
present after selection are
modelled

B’ = J/yrntn~
BY = J/yrtn~

B) = J/v(n — (p— w77 )y)
B = J/p(n = (p— 77 )7)
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OTHER PEAKING BACKGROUNDS

o Many backgrounds are
considered and are seen to
be effectively removed by the
selection

Double-misid decays
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RARE MODE
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combinatorial background
remaining after the selection
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o Expect ~30 signal events for
Run 1 and ~35 signal
events for Run 2 c.f. 40 from
Run 1 analysis — due to
tighter cuts in selection
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ANGULAR ANALYSIS

o Final state does not distinguish between B%and B Do not have access to
full set of angular variables without a flavour-tagged time-dependent
angular analysis (requires upgraded |l Dataset)

o Can determine longitudinal polarisation fraction form projection:

1 dI 3 3
= = —Ff,cos® Oy + —(1 — FL,)(1 — cos* 6
I'd cos @y 2 L CO8 h+4( L)( cos™ On)
1dI’ 1
rds — 2'fr(1/+S:j cos 2¢ —;jh* sin 2¢)
Sensitive to RH currents T-odd observable, sensitive to CP
(photon polarisation at low-g?2) violating effects. Can be large due

to weak phase differences_
between diagrams with WU and tt
contributions




FUTURE WORK

o Finalise mass fits and efficiencies

o Systematic errors

o Angular analysis
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PEAKING BACKGROUNDS

o Major peaking backgrounds are identified within data by swapping mass hypotheses
o Consider backgrounds such as:

B° — K*°
» Misidentified backgrounds BY : (¢ jé(*l(‘)uu

Ay — pK iy
> Partially reconstructed  BY — (1) — pvy)up
BY = (¢ = nrm 7)) up
> Over reconstructed B+ _ K+uu
Tt up
» Semileptonic

B’ - (D™ = (K* = Km)u v)u*v
backgrounds

» Hadronic backgrounds b — T

o Potential backgrounds which cannot be easily seen within data have yields estimated
relative to control mode using BFs, PID eff ratios, fragmentation fractions and mass
window efficiency estimated with RapidSim samples

18
. e



Global fits

o Several attempts to understand LHCb results using global fits to b — s
data

[W. Altmannshofer et al. EPJC 77 (2017) 377
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PID VS BDT OPTIMISATION
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CONTROL MODE FIT

o BY — K*OJ/w used as control mode due to clean signal and large yield
o Control mode is used for normalisation within the BF calculation to cancel systematics

o Fit with sum of two Crystall Ball functions + Gaussian — lower tail to accomodate FSR and upper
to accomodate non-Gaussian tails. Exponential for combinatorial background
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MVA OVERTRAINING CHECKS 1/

Run 1

Use learning
curves as
test for
overfitting
and

underfitting
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MVA Performance

o Compare BDT response for different but kinematically similar MC modes — would
expect similar performance in absence of large overtraining
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MVA Performance

o Compare BDT response for different but kinematically similar MC modes — would
expect similar performance in absence of large overtraining
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