

Angular Analysis of $B^+ \to K^+ ee$ Decays at the LHCb Experiment

IOP 2019 - Imperial College, London

Sam Maddrell-Mander ¹

April 7, 2019

¹University of Bristol, on behalf of the LHCb collaboration

Introduction I

Precision measurements using electroweak penguins

- $b \rightarrow sll$ forms a family of rare decays
- Look at the observables where:
 - SM contribution is small
 - The measurement can be made to a high precision
 - Predicted to a high precision
- Flavour changing neutral currents in SM
- → Loop level
- → GIM suppressed
- → Left handed chirality
- NP could violate any of these

Introduction II

The anomalies in the b o s / l sector persist and are not understood

- b → sll is a rare decay so NP contributions could enter on a comparable level
- Three key areas:
 - 1. Lepton flavour universality tests in decay rates of $B^{(*)+} o K^{(*)+} I^+ I^-$
 - 2. Measured decay rates in $B^{(*)} \to K^{(*)} \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$
 - 3. Angular analyses of $B^{(*)} \to K^{(*)} \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$
- Now more than ever we need precision measurements.

Introduction III

How do we interpret the anomalies?

Model using effective field theories

- C_7 , C_9 , C_{10} , C_P , C_S , C_T photon, vector, axial-vector, (pseudo-)scalar, tensor
- Global fits point towards a shift in Wilson Coefficient C₉ (vector)
- Hints at potential lepton flavour universality violating effects in C₉

Real C_9 and C_{10} global fits showing the shift in favour of C_9 - (SM on crosshair) - Morimond 2019

Introduction IV: Where does an angular analysis come in?

Prompted to reconsider assumptions about lepton universality in other currents. The $B^+ \to K^+ \ell^+ \ell^-$ decays have a very simple angular structure in terms of these parameters:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l} = \frac{3}{4} (1 - F_H)(1 - \cos^2\theta_l) + \frac{1}{2} F_H + A_{FB} \cos\theta_l$$

Quadratic in $cos\theta_I$, cosine of the opening angle between the I^+ and K^+

- For $q^2 \gg m_\ell^2$, F_H and A_{FB} ONLY sensitive to (pseudo-)scalar and tensor couplings $(C_{S,P,T})$.
- ullet Thus electron final state not sensitive to C_9 and C_{10} in majority of q^2 distribution
 - ightarrow Excellent sensitivity to (pseudo-)scalar and tensor Wilson coefficients $C_{S,P}$ and C_T
 - ightarrow Alternatively validation of electron reconstruction and thus $R_{K^{(*)}}$ measurements

Introduction V: Previous Work

What does the measurement look like?

- The run 1 Angular fit in A_{FB} , F_H space of $B^+ \to K^+ \mu \mu$ is in agreement with the SM
- \rightarrow The allowed angular distribution lies in a triangle in A_{FB} and F_H space.
- \rightarrow Physical region takes this shape by requiring angular PDF to be positive definite for all $cos\theta_I$

Angular fit in A_{fb} , F_H space for two q^2 regions (a) 1.1 - 6 GeV, (b) 15 - 20 GeV JHEP 1405 (2014) 082

Selection

Analysis conducted with 2011+2012 (Run1) and 2015+2016 (Run2) dataset

- Key backgrounds: combinatorial, partially-reconstructed $(B \to K^*ee)$, cascading semi leptonic decays $(B \to D^0(\to Ke\nu)e\nu)$
- Selection utilises a series of neural networks to supress backgrounds
- And focused selections on particle mass hypotheses for mis-ID
- Simulation calibrated using data control channels
- \rightarrow Calibrate: B^+ kinematics, Tracking, Particle ID, Trigger, Resolution

ROC curve from combinatorial neural network

Validating the control mode

Angular distribution of $B^+ \to K^+ J/\Psi(\to ee)$ well known - use as control mode It will be a different q^2

region, different decay, different kinematics, etc...

- Need a way to approximate the rare mode
- Built a classifier (TF NN) to separate $B \to Kee$ and $B \to J/\Psi K$ MC. lepton and kaon opening angles, and high + low electron P_T
- Compare angular distribution of data/mc $B \rightarrow J/\Psi K$ in slices of this classifier

- → MC and data in agreement over this variable
- \rightarrow Allows us to validate our corrections in proxy variable for q^2
- → Given the inherent difficulty in justifying corrections from one region onto another, provides valuable validation information

Mass Fits

- ullet Mass fitting strategy uses partially-reconstructed enriched + depleted regions as constraint
- 6 part simultaneous fit to three trigger categories for two part-reco regions

Yields consistent with those published in [arXiv:1903.09252]

Acceptance Corrections

To account for all sculpting of angular distribution

- Correction accounts for all selections in the pipeline, as well as detector / trigger level effects
- Model the difference of final selection to generator level MC
- Describe using Legendre Polynomial
- The step comes from focused selections against cascading semi leptonic backgrounds in the rare mode

$$B^+ o D^0 (o Ke
u) e
u$$
 peaks in $0.6 < cos heta_I < 0.9$

Angular Fit I: $B \to J/\Psi(\to ee)K^+$ simultaneous fit

Fit function for the angular distribution is just a quadratic

$$\begin{split} \frac{1}{\Gamma}\frac{d\Gamma}{dcos\theta_l} &= \frac{3}{4}(1-F_H)(1-cos^2\theta_l) + \frac{1}{2}F_H + A_{FB}cos\theta_l \\ \text{SM parameters for } B^+ &\to K^+J/\Psi(\to ee) : \\ A_{FB}, F_H &= 0,0 \end{split}$$

- Global fit is a 6 part simultaneous (3x exclusive trigger categories, 2x runs)
- Binned ML fit to $cos\theta_I$ in 20 bins, limited by mc statistics to understand q^2 migrations

Angular Fit II: $B^+ \to K^+ ee$ like $B^+ \to K^+ J/\Psi(\to ee)$ Data

Angular fit to the most $B^+ \to K^+ ee$ like $B^+ \to K^+ J/\Psi(\to ee)$ data to approximate rare mode

- Use a cut on $ProbNN_{shell} < 0.3$ to select the most Kee like $B^+ \to K^+ ee$ like $B^+ \to K^+ J/\Psi(\to ee)$ data
- This is the closest we can get with the control mode data to being confident about the propagation into the rare mode
- Full 2D Feldmann Cousins method to quantify systematic uncertainties - due to unphysical regions

Feldmann Cousins confidence interval for *Kee* like $B^+ \to K^+ J/\Psi(\to ee)$ data, to approximate rare mode. Uncertainties estimated with full Feldmann Cousins

Angular Fit III: $B^+ \rightarrow K^+ ee$ Expected Precision

What kind of confidence interval can we expect from our final result?

- Generate toy samples with specified
 A_{FB}, F_H - yields taken from mass fits to
 Run1 + Run2 data
- same six part simultaneous fit as in the $B^+ \to K^+ J/\Psi(\to ee)$ mode
- The results of the full Feldmann Cousins scan give an uncertainty on the order of 0.075 in F_h
- Uncertainty is statistically dominanted
- → Key systematics understood background subtraction, and acceptance correction

Feldmann Cousins confidence intervals from toy studies, showing realistic uncertainty constraints

Conclusions

Nearing the end of this analysis.

- Validated our corrections and fit procedure
- Main systematic uncertainties have been evaluated
- Results should provide the most stringent constraints in C_S , C_P and C_T couplings to electrons

