Measurement of γ in $B^0 \rightarrow DK^{*0}$ decays at the LHCb experiment

IOP HEPP & APP 2019

Hannah Pullen 10th April 2019

University of Oxford

- 1. What is γ and why do we want to measure it?
- 2. Measuring γ using $B^0 \to D K^{*0}$ decays
- 3. Preliminary results from $B^0 \rightarrow DK^{*0}$ analysis of 2011 2016 data (LHCb-PAPER-2019-021 coming soon)

• The CKM matrix gives amplitudes for transitions between *d*-type and *u*-type quarks:

$$V_{\rm CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

• The matrix can be parametrised to have a single complex phase, which is the only source of *CP* violation in the Standard Model:

$$V_{\rm CKM} = egin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta)\ -\lambda & 1-\lambda^2/2 & A\lambda^2\ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$$

Measurement of γ in ${\it B}^0\,\rightarrow\,{\it DK}^{*0}$ decays at LHCb

- According to the Standard Model CKM matrix is **unitary** since there are no flavour-changing couplings apart from W^{\pm} .
- We get constraints such as $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0.$
- This defines a **triangle** with angles of similar size:

Direct and indirect measurements of γ

- We measure γ directly using **tree-level** decays (unlikely to be affected by new physics). The current LHCb average is $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$ [LHCb-CONF-2018-002].
- Indirect measurements depend on **loop diagrams**, and give $\gamma = (65.64^{+0.97}_{-3.42})^{\circ}$ [CKMFitter 2018]. Disagreement between the direct and indirect values would be evidence for new physics!

Measurement of
$$\gamma$$
 in $B^0 \rightarrow DK^{*0}$ decays at LHCb

$B^0 ightarrow DK^{*0}$ decays

- This means a smaller decay rate, but larger interference effects.
- Decay rate depends on:
 - 1. Weak-phase difference, γ ;
 - 2. Amplitude ratio, r_B (\sim 0.3, vs. \sim 0.1 for $B^- \rightarrow DK^-$);
 - 3. Strong-phase difference, δ_B ;
 - 4. Coherence factor, κ , to account for non- K^{*0} contributions to $B^0 \to DK^+\pi^-$ (= 0.958^{+0.005}_{-0.046} [PRD 93 (2016) 112018]).

Measurement of γ in ${\it B}^0\,\rightarrow\,{\it DK^{*0}}$ decays at LHCb

Analysis overview

- Use $5fb^{-1}$ of data collected at LHCb between 2011 and 2016.
- Reconstruct *D* mesons in 7 final states: K^+K^- , $\pi^+\pi^-$, $K^{\pm}\pi^{\mp}$ (previously measured in Run 1 [PRD 90 (2014) 112002]), $\pi^+\pi^-\pi^+\pi^-$ and $K^{\pm}\pi^{\mp}\pi^+\pi^-$ (first measurement).
- Measure CP observables and extract constraints on γ , r_B and δ_B .

We study the *CP*-even *D* final states (*K*⁺*K*⁻, π⁺π⁻) using the GLW method. Measure the asymmetry:

$$\mathcal{A}_{CP}^{hh} \equiv \frac{\Gamma(\bar{B}^0 \to D(h^+h^-)\bar{K}^{*0}) - \Gamma(B^0 \to D(h^+h^-)K^{*0})}{\Gamma(\bar{B}^0 \to D(h^+h^-)\bar{K}^{*0}) + \Gamma(B^0 \to D(h^+h^-)K^{*0})}$$

• Also measure the ratio w.r.t. the Cabibbo favoured $(D \rightarrow K^- \pi^+)$ channel:

$$\begin{split} \mathcal{R}_{CP}^{hh} \equiv & \frac{\Gamma(\bar{B}^0 \to D(h^+h^-)\bar{K}^{*0}) + \Gamma(B^0 \to D(h^+h^-)K^{*0})}{\Gamma(\bar{B}^0 \to D(K^-\pi^+)\bar{K}^{*0}) + \Gamma(B^0 \to D(K^+\pi^-)K^{*0})} \\ & \times \frac{BF(D^0 \to K^-\pi^+)}{BF(D^0 \to h^+h^-)} \end{split}$$

• We can extend the method to the quasi-GLW mode $\pi^+\pi^-\pi^+\pi^-$, using the fractional *CP*-even content: $F_+^{4\pi} = 0.759 \pm 0.023$ [JHEP 01 (2018) 144].

Measurement of
$$\gamma$$
 in ${\it B}^0
ightarrow {\it DK}^{*0}$ decays at LHCb

- There are two categories of $D \to K^{\pm} \pi^{\mp}$ decays:
 - 1. **Favoured**, when final-state kaons have the same charge $(K\pi)$;
 - 2. **Suppressed**, when final-state kaons have the opposite charge (πK) .
- We measure the ratios \mathcal{R}^{\pm} (more experimentally robust than \mathcal{A}_{ADS} and \mathcal{R}_{ADS}):

$$\begin{aligned} \mathcal{R}^{\pi K}_{+} &= \frac{\Gamma(B^0 \to D(\pi^+ K^-) K^{*0})}{\Gamma(B^0 \to D(K^+ \pi^-) K^{*0})} \\ \mathcal{R}^{\pi K}_{-} &= \frac{\Gamma(\bar{B}^0 \to D(\pi^- K^+) \bar{K}^{*0})}{\Gamma(\bar{B}^0 \to D(K^- \pi^+) \bar{K}^{*0})} \end{aligned}$$

• This method is extended to the quasi-ADS modes, $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$, using an additional coherence factor $\kappa_D^{K3\pi} = 0.43^{+0.17}_{-0.13}$ [PLB 757 (2016) 520].

- Mass windows on D and K^{*0} mesons
- Boosted Decision Trees to reduce combinatorial background
- Particle ID information to separate D decay categories
- Vetos on specific physics backgrounds

Invariant-mass fit model

Fit components:

2. $B_s^0 \rightarrow DK^{*0}$

1. Signal $B^0 \rightarrow DK^{*0}$

3. Combinatorial background

4. $B^0 \rightarrow D^* K^{*0}$ (part reco)

5. $B_s^0 \rightarrow D^* K^{*0}$ (part reco)

7. $B^0 \rightarrow D\pi^+\pi^-$ (mis-ID)

6. $B^+ \rightarrow DK^+\pi^-\pi^+$ (part reco)

LHCb ГНСр

The suppressed mode (πK) is observed for the first time, to a significance of 5.8σ .

Preliminary results: $K^{\pm}\pi^{\mp}$ NEW!

Preliminary results: $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ NEW!

Measurement of γ in ${\it B}^0\,\rightarrow\,{\it DK}^{*0}$ decays at LHCb

Preliminary results: K^+K^- and $\pi^+\pi^-$ NEW!

ГĤС

$$\mathcal{R}_{C\!P}^{4\pi} = 1.012 \pm 0.165 \pm 0.037$$

Signal significance 8.4 σ (First observation!)

Summary of preliminary results:

\mathcal{A}_{CP}^{KK}	=	-0.051	\pm	0.101	\pm	0.008
$\mathcal{A}_{C\!P}^{\pi\pi}$	=	-0.182	\pm	0.142	\pm	0.008
$\mathcal{R}_{CP}^{\overline{K}K}$	=	0.918	\pm	0.099	\pm	0.020
$\mathcal{R}_{C\!P}^{\pi\pi}$	=	1.315	\pm	0.194	\pm	0.029
$\mathcal{A}_{CP}^{\overline{4}\pi}$	=	-0.026	\pm	0.151	\pm	0.013
$\mathcal{R}^{4\pi}_{CP}$	=	1.012	\pm	0.165	\pm	0.037
$\mathcal{R}_{+}^{\pi K}$	=	0.064	\pm	0.021	\pm	0.002
$\mathcal{R}_{-}^{\pi K}$	=	0.095	\pm	0.021	\pm	0.002
$\mathcal{R}^{\pi K\pi\pi}_+$	=	0.074	\pm	0.026	\pm	0.002
$R^{\pi K\pi\pi}$	=	0.072	\pm	0.025	\pm	0.003

The dominant systematics are:

- GLW asymmetries (A_{CP}): Production and detection asymmetry corrections.
- GLW ratios (\mathcal{R}_{CP}): Branching fraction normalisation, selection efficiency correction.
- ADS ratios (\mathcal{R}^{\pm}): Fixed parameters in invariant mass fit.

Measurement of γ in $B^0\,\rightarrow\,{\it DK}^{*0}$ decays at LHCb

γ interpretation NEW!

- Two solutions in γ δ_B space are compatible with the current LHCb measurement, γ = 74.0^{+5.0}_{-5.8}. No strong γ constraint since we saw no significant *CP* violation.
- We measure $r_B = 0.265 \pm 0.023$, significantly improving upon the previous measurement (0.240 \pm 0.052). This will have a strong impact on LHCb and world γ averages.

Measurement of γ in $B^0 \rightarrow DK^{*0}$ decays at LHCb

- Decays of $B^0 \rightarrow DK^{*0}$ with $D \rightarrow \pi^+\pi^-\pi^+\pi^-$ and the suppressed mode $D \rightarrow \pi K$ are observed to $> 5\sigma$ for the first time.
- *CP* observables are measured and interpreted in terms of γ , r_B and δ_B . The resulting constraints are found to be consistent with expectation.
- Further B⁰ → DK^{*0} analyses with different D modes and utilising the full Run-2 data set will improve constraints and break degeneracies.
- Paper coming very soon! (LHCb-PAPER-2019-021)