

Prospects for ttZ measurements at ATLAS with the full LHC Run 2 dataset

IoP APP/HEPP Conference Monday, 8th April 2019

Baptiste Ravina University of Sheffield IoP HEPP committee This talk will consider only ATLAS measurements, the latest with 2015-2016 data arXiv:1901.03584 (Submitted to Phys. Rev. D)

I will try to answer the following questions:

- Top quark? Why do we (still) care?
 - precision measurements in the top sector
 - window to new physics
- So, what exactly did you do?
 - a quick look at the 36 fb⁻¹ ttZ measurement
 - constraints on anomalous couplings and EFT
- And what's next?
 - going differential
 - full Run 2: more statistics, better systematics!
 - fun ideas for future research...

Top quark? Why do we (still) care?

Why Top still interesting?

- With final Tevatron data set and the ever growing LHC data sample: top quark studies very interesting until today!
- What can we learn?
 - Is the top really the "SM top", or something else? \rightarrow need to measure its production cross section and properties and compare with SM calculations
 - Top quark: only quark decaying before it hadronises \rightarrow can study a bare quark For example can study spin of a quark directly (as it transfers it to the decay products before it could hadronise); or study a quark's charge
 - Top production and decay: via strong and electroweak forces \rightarrow we can learn more about these forces For example: W helicity in top decays
 - VEII18 OIPP Top as window to new physics (since it is the heaviest known particle) \rightarrow searches for many new physics models in the top sector
 - Large top samples at LHC: use top events to develop new tools \rightarrow for example tools to access the colour flow between jet pairs

Precision measurements of top quark properties

ttZ - a background in Beyond the Standard Model searches 6

ttbar + MET (+leptons) : generic BSM signal

irreducible background

1706.03986

1606.03903

BSM Higgs + 2L

1712.06386

So, what exactly did you do?

Measuring the ttZ cross-section: a rare process!

Standard Model Total Production Cross Section Measurements Status: July 2018

Focusing on the trilepton channel: signal regions

arXiv:1901.03584 (Submitted to Phys. Rev. D)

9

Define 3 signal regions based on (b-)jet multiplicity, and a extra one targeting off-shell Z decays and Z/_Y* interference.

Focusing on the trilepton channel: background estimation 10

arXiv:1901.03584 (Submitted to Phys. Rev. D)

Matrix Method (<u>1012.1792</u>): invert the following equation to recover the number of "real" and "fake" leptons.

$$\begin{pmatrix} \langle n_T \rangle \\ \langle n_L \rangle \end{pmatrix} = \begin{pmatrix} \varepsilon_r \ \varepsilon_f \\ \bar{\varepsilon}_r \ \bar{\varepsilon}_f \end{pmatrix} \begin{pmatrix} n_R \\ n_F \end{pmatrix}$$

Measuring the ttZ cross-section: results at 36 fb-1

Fit configuration	$\mu_{t\bar{t}Z}$	$\mu_{t\bar{t}W}$	
Combined	1.08 ± 0.14	1.44 ± 0.32	
2ℓ-OS	0.73 ± 0.28	-	
3 <i>l tī</i> Z	1.08 ± 0.18	-	
2ℓ -SS and $3\ell \ t\bar{t}W$	_	1.41 ± 0.33	
4ℓ	1.21 ± 0.29	-	

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
CR and simulated sample statistics	1.8%	7.6%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	2.4%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10.2%	16.0%
Statistical	8.4%	15.2%
Total	13.0%	22.2%

Constraints on anomalous couplings and EFT

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$

$$\sigma = \sigma_{\rm SM} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \sigma_{i}^{(1)} + \sum_{i,j} \frac{C_{i}C_{j}}{\Lambda^{4}} \sigma_{ij}^{(2)}$$

$$\mathcal{L}_{\rm D6} \supset \frac{C_{uW}}{\Lambda^{2}} \left(\bar{q} \sigma^{\mu\nu} \tau^{I} u \right) \tilde{\varphi} W^{I}_{\mu\nu} + \frac{C_{uB}}{\Lambda^{2}} \left(\bar{q} \sigma^{\mu\nu} u \right) \tilde{\varphi} B_{\mu\nu} + \frac{C_{\varphi q}^{(3)}}{\Lambda^{2}} \left(\phi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} \tau^{I} q \right)$$

$$+ \frac{C_{\varphi q}^{(1)}}{\Lambda^{2}} i \left(\phi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} q \right) + \frac{C_{\varphi u}}{\Lambda^{2}} \left(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{u} \gamma^{\mu} u \right)$$

$$\frac{1601.08193}{\Lambda^{2}}$$

5 relevant dimension-6 EFT operators

$$\mathcal{L}_{t\bar{t}Z} = e\bar{u} \left[\gamma^{\mu} \left(C_{1,V} + \gamma_5 C_{1,A} \right) + \frac{i\sigma^{\mu\nu} q_{\nu}}{m_Z} \left(C_{2,V} + i\gamma_5 C_{2,A} \right) \right] v Z_{\mu}$$

12

Constraints on anomalous couplings and EFT

3

And what's next?

Going differential with the full Run 2 dataset

Almost 5x more data, systematics better understood, can focus on high purity regions.

Special interest in **top reconstruction techniques**: studying jet matching algorithms, neutrino reweighting, lost jet corrections, likelihood fitting, transfer functions, band c-tagging...

Besides being able to compare the observed shapes of ttZ-system kinematics to various generators, one could also investigate ttZ spin correlations...

Going from Top to SUSY...

Spin correlation in dileptonic ttbar events: SM-like, or heavy mediator signature?

... and from SUSY to Top

Turn null-results into SM measurements!

Very basic BDT-based proof-of-concept (there are much more interesting ML approaches one could take!):

here, discriminate ttZ(vv) against background in a loose 0L region.

NTrees=850 : MinNodeSize=2.5% : MaxDepth=3 : BoostType=AdaBoost : AdaBoostBeta=0.5 : UseBaggedBoost : BaggedSampleFraction=0.5 : SeparationType=GiniIndex : nCuts=20

Run 2 results are coming! Stay tuned...

The ATLAS detector

Fig. 3: Rare footage of ATLAS physicists giving birth to a **pixel detector**

Jets and b-tagging

