Neutrinoless Double Beta Decay Phase of the SNO+ Experiment

IOP Joint APP and HEPP Annual Conference 8 April 2019

Tereza Kroupa (SNO+ Collaboration)

SNO+

Multipurpose neutrino detector in Sudbury, Canada

~9300 PMTs

Acrylic vessel 12 m diameter

7 kt ultra pure water shielding

2070 m of rock overburden

PMT support structure 18 m diameter

Hold up and hold down rope systems

Timeline

Water phase: Finished

Pure scintillator phase: Filling ongoing

Tellurium phase: Loading starts early 2020

Reactor antineutrinos

Invisible nucleon decay + other exotic physics

SNO+ Physics

Neutrinoless double beta decay

Tellurium loaded scintillator

Requirements: High light yield, radiopurity, long term stability, material compatibility, safety...

2g/L 2,5-diphenyloxazole (PPO)

Tellurium-butanediol (TeBD)

N,N-dimethyldodecylamine (DDA, 0.5 molar DDA:Te)

Amine addition - light yield

N

N,N-Dimethyldodecylamine

Advantages:

Helps stabilise TeBD in LAB
Safe for underground handling
Increases light yield by ~15%
Improves resistance against water

DDA neutralises TeBD mixture and forms an ionic association with the complex to solubilise in LAB

DDA offsets Te quenching to some extent — 0.5 molar ratio chosen to optimise light output

Amine addition – water resistance

Water association can cause phase separation in samples without DDA - Te effectively falling out of solution decreases quenching and hence LY increases over time

Flake formation in samples without DDA upon **extreme** humidity exposure

Light yield remains stable over time with DDA

2 yrs after humidity exposure

DDA:Te = 1DDA:Te = 2

DDA reduces oligomerisation into longer Te chains improving its long term stability in humid conditions

Ovββ in Phase I

Tellurium 130

High Q value (2.5 MeV)
High natural abundance (34 %)
Long 2vββ half-life (7.9x10²⁰ yrs)
Light yield of 460 PMT hits/MeV
with loading technique

Counting analysis

9.47 counts/yr \rightarrow T_{1/2} > 2.1x10²⁶ yrs after 5 yrs with 0.5 % Te (Phase I)

Ovββ analysis

Likelihood analysis development

Can improve sensitivity by fitting
the overall distribution
Binned log likelihood as test statistics
Markov Chain Monte Carlo optimiser
~30 background normalisations floated in the fit

Currently a 2D fit in energy and R³
Planned extension to more dimensions using **timing**and topological background discrimination*

*Dunger, Biller: "Multi-site Event Discrimination in Large Liquid Scintillation Detectors" 2019 (arXiv:1904.00440)

**Time residuals = t_{hit} - t_{fit} - t_{tof} θ = angle between reconstructed position and hit PMT

Summary

SNO+ deploys a novel technique for Tellurium loading into organic scintillator Addition of DDA improves properties of loaded scintillator mixture (light yield and water attack resistance)

SNO+ will have world leading sensitivity to 0νββ in ¹³⁰Te

Back up

