UNIVERSITY^{OF} BIRMINGHAM

Single diffraction cross-section measurement with ATLAS in p-p collisions at √s = 8 & 13 TeV

James Kendrick

J Kendrick - University of Birmingham

Single diffraction

- Small 4-momentum transfer with no quantum numbers exchanged between the protons
- 1 proton remains intact, 1 dissociates into a diffractive X system
- · Characteristics of an SD event:
 - 1 intact proton at very large rapidity
 - Large gap in rapidity space between proton and edge of diffractive system

Single diffraction

FI

SD

- SD accounts for ~10% of total p-p cross-section
- Poorly understood
- Intact protons can be tagged & measured
- No published LHC measurements using proton tagging

*Plot constructed using default σ from Pythia8 for √s = 13 TeV

J.Kendrick@CERN.ch

ND

ALFA spectrometer

4

ALFA spectrometer

- Requires low pile-up, high β* LHC runs
 - Above & below outgoing beams
- ±237m & ±245m away from IP
- Inserted following stable beams
- Used to identify the outgoing diffractive proton, ~10µrad away from 'normal'
- Can reconstruct proton kinematics with the effect of magnets taken into account

J.Kendrick@CERN.ch

•

SD differential variables

- Fractional energy loss of proton, ξ, measure as:
 - ξ_{ALFA} Reconstruct proton kinematics from ALFA tracks
 - ξ_{EPz} Measure invariant mass of X system with ATLAS inner detector and calorimeter
- Gap in rapidity space, Δη:
 - Measured with respect to ID / calorimeter edge on side of ALFA proton
- t channel exchange, measure by:
 - Reconstruct proton's P_T from ALFA tracks

 $t = (p_3 - p_2)^2$

 $\frac{M_X^2}{s} \approx \frac{\Sigma_i (E^i \pm$

P

P₃

P₁

 P_2

 ξ_{Epz}

 $t \approx -P_T^2$

J Kendrick - University of Birmingham

Event selection

ALFA selection

- Reconstruction requires at least 6 fibres hit in each plane
 - Apply additional selection based on:
 - x̄ the average x coordinate between the two stations
 - θ the local angle in the x plane between the two station
- Plot shows the elliptical distribution expected

•

LHC conditions

- Typically for run-2:
 - High pile-up: ~50 collisions per bunch crossing
 - Low β^* : 30 to 50 cm
 - Ideal for high-luminosity production
- For this data:
 - Low pile-up: ~0.1 collisions per bunch crossing
 - High β*: 90m
 - Ideal for ALFA tagging

J Kendrick - University of Birmingham

- SD σ is normalised to approximate result from equivalent 8 TeV analysis
- 13 TeV MC selection is not final and lacking some corrections

Reconstructed &

J Kendrick - University of Birmingham

J.Kendrick@CERN.ch

11

Reconstructed |t|

J Kendrick - University of Birmingham

Conclusions & outlook

- 8 TeV analysis:
 - SD σ to be $\sim^2/_3$ of expected value
 - $a(0) = 1.07 \pm 0.09$ c.f. with 1.14 & 1.00 for PYTHIA8 A3 & A2
 - B = 7.60 ± 0.23 (stat) ± 0.22 (syst) GeV⁻²
- 13 TeV analysis:
 - New MC samples produced
 - · Calorimeter data provides better ξ resolution & larger fiducial range

J Kendrick - University of Birmingham