Imperial College _____ London

Status of the LZ dark matter experiment

Brais López Paredes, Imperial College London On behalf of the LZ collaboration

IOP Joint APP & HEPP conference 2019

Z The LZ core

- Liquid/Gas Xenon TPC (LXe-TPC)
- Looking for very low-E WIMP recoils
- Particle scattering on Xe produces prompt scintillation (S1) and electrons.
- Electrons swept up into gas phase produce electroluminescence (S2).
- Full 3D reconstruction from light pattern (XY) and S1-S2 time delay (Z) enables fiducialisation.
- S2/S1 ratio for ER-NR discrimination.

Z The LZ detector

- LXe-TPC:
 - 7 tonnes active Xe
 - 5.6 tonnes fiducial volume
- Two veto systems
 - LXe skin
 - Outer detector (20 tonnes Gd-LS)
- Internal and external calibrations (ER and NR)
- Location: Sanford Underground Research Facility (SURF) in Lead, South Dakota

The LZ Detector

Z Physics at LZ

- WIMPs: Weakly Interacting Massive Particles
 - SI, SD and more generic EFT operator searches
 - $O(10^{0})$ to $O(10^{4})$ GeV/c²
- Complementary to LHC
- Neutrinoless double beta decay
 - ¹³⁶Xe 8.9% natural concentration
- Solar and supernova neutrinos
 - ~10 tonne scale detector
 - Solar ⁸B neutrino via CE_vNS

All made possible by an extensive cleanliness programme, backgrounds control and calibrations!

Z WIMP backgrounds

1000 days, 5.6 tonnes (ER: 1.5–6.5 keV, NR: 6–30 keV)

Source	ER counts	NR counts
Detector components	9	0.07
Surface contaminants, dust	40	0.39
Xenon contaminants	819	0
Laboratory and cosmogenics	5	0.06
$2\nu\beta\beta$, Solar pp+ ⁷ B+ ¹³ N, DSN and atmospheric neutrinos	322	0.51
Total	1195	1.03
99.5% ER discrimination, 50% NR acceptance	5.97	0.52

Radio-assays (HPGe, ICP-MS, NAA) → >1000 detector material assays! Rn emanation screening Surface cleanliness programme + Detector assembled in Rn-reduced cleanroom Online Rn removal system Charcoal chromatography (⁸⁵Kr, ³⁹Ar)

Expect ~6 counts ER+NR in 1000 days, 5.6 tonnes FV after all analysis cuts

Status of construction

- Outer cryostat vessel (OCV) transported and assembled underground in LZ water tank
- Laser metrology and leak checking completed
- Inner cryostat vessel (ICV) completely tiled with PTFE, at surface lab.
- Bottom skin PMTs in place

Z Photomultiplier arrays

- PMT arrays delivered to SURF
- Ongoing:
 - PMT cabling
 - Array dressing with PTFE
 - Additional components: calibration LEDs, thermometers, sensors, fluid tubes

Z TPC stacking

- Forward Field Region (FFR) assembled.
- Interlocking PTFE and titanium rings - voltage ladder

• Reverse Field Region (RFR) and Extraction Region assembled soon

Z Grid manufacture

- Semi-automated robot for wire weaving
- ~100µm wires epoxied to ring
- Manufacture of all grids finalised
- Full scale grid testing

Close-up of picture on the left

Z Outer Detector

- 4 large side acrylic tanks in water tank
- Smaller tanks delivered soon

 Major progress in Gd-loaded scintillator production

- CD-1/3a Review March 2015 (conceptual design, UK project kick-off)
 - Conceptual Design Report September 2015 (arXiv:1509.02910)
- CD-2/3b Review April 2016 (project baseline)
- CD-3 Review February 2017 (start of construction)
 - Technical Design Report March 2017 (arXiv:1703.09144)
- Cryostat delivered to SURF May 2018
- TPC assembly Ongoing
- TPC underground installation Summer 2019
- Cooldown Winter 2019-2020
- Physics-ready Spring 2020

Z The LZ collaboration

38 institutions, ~250 scientists, engineers, technicians

- 1) IBS-CUP (Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhl (Russia)
- 4) Imperial College London (UK)
- 5) Royal Holloway University of London (UK)
- 6) STFC Rutherford Appleton Lab (UK)
- 7) University College London (UK)
- 8) University of Bristol (UK)
- 9) University of Edinburgh (UK)
- 10) University of Liverpool (UK)

- 11) University of Oxford (UK)
- 12) University of Sheffield (UK)
- 13) Black Hill State University (US)
- 14) Brandeis University (US)
- 15) Brookhaven National Lab (US)
- 16) Brown University (US)
- 17) Fermi National Accelerator Lab (US)
- 18) Lawrence Berkeley National Lab (US)
- 19) Lawrence Livermore National Lab (US)
- 20) Northwestern University (US)

- 21) Pennsylvania State University (US)
 22) SLAC National Accelerator Lab (US)
 23) South Dakota School of Mines and Technology (US)
- 24) South Dakota Science and Technology Authority (US)
- 25) Texas A&M University (US)
- 26) University at Albany (US)
-) 27) University of Alabama (US)
- 28) University of California, Berkeley (US) 38) Yale I

- 29) University of California, Davis (US)
- 30) University of California, Santa Barbara (US)
- 31) University of Maryland (US)
- 32) University of Massachusetts (US)
- 33) University of Michigan (US)
- 34) University of Rochester (US)
- 35) University of South Dakota (US)
- 36) University of Wisconsin Madison (US)
- 37) Washington University in St. Louis (US)
- 38) Yale University (US)

Thank you

Z LZ calibration sources

Table 7.0.1: Baseline calibration sources for LZ.

Isotope	What	Purpose	Deployment	Custom?
Tritium	beta, $Q = 18.6 \text{keV}$	ER band	Internal	N
^{83m} Kr	beta/gamma, 32.1 keV and 9.4 keV	TPC (x, y, z)	Internal	Y
^{131m} Xe	164 keV γ	TPC (x, y, z) , Xe skin	Internal	Y
²²⁰ Rn	various α 's	xenon skin	Internal	N
AmLi	(<i>α</i> , <i>n</i>)	NR band	CSD	Y
²⁵² Cf	spontaneous fission	NR efficiency	CSD	N
⁵⁷ Co	122 keV γ	Xe skin threshold	CSD	N
²²⁸ Th	2.615 MeV γ , various others	OD energy scale	CSD	N
²² Na	back-to-back 511 keV γ 's	TPC and OD sync	CSD	N
⁸⁸ Y Be	152 keV neutron	low-energy NR response	External	N
²⁰⁵ Bi Be	88.5 keV neutron	low-energy NR response	External	Y
²⁰⁶ Bi Be	47 keV neutron	low-energy NR response	External	Y
DD	2,450 keV neutron	NR light and charge yields	External	N
DD	272 keV neutron	NR light and charge yields	External	Y

Z Self-shielding LXe-TPC

Z Veto strategy

Z Cryogenic and xenon systems

- Xenon liquefaction tower recently delivered and installed underground
- Test cryostat assembled
- First Xe pack in u/g storage
- Now piping together all systems for circulation testing
- Nearly all xenon in hand
- Kr removal to start in the summer

DAQ and electronics

- Electronics chain test confirmed 99.8% SPE efficiency
- Final amplifier boards produced by end of month

