Integration-by-parts identities and multi-loop QCD amplitudes

Herschel A. Chawdhry

Cavendish Laboratory University of Cambridge

IOP HEPP-APP Annual Conference 8th April 2019

Based on hep-ph/1805.09182 with M. A. Lim and A. Mitov

Introduction

- Precise calculations of scattering amplitudes in gauge theories (such as QCD) require the evaluation of multi-loop diagrams
- Multi-loop integrals are often evaluated using integration-by-parts (IBP) identities
- We introduce a new strategy for solving IBP identities
- As an example, we use it to reduce all of the planar integrals in any massless 2-loop 5-point QCD scattering amplitude

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
- Conclusion and future work

- Introduction
 - Why scattering amplitudes?
- - Why IBPs?

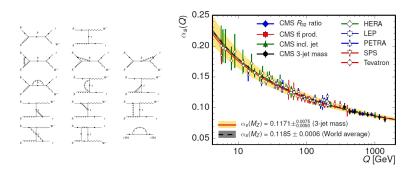
4 D > 4 A > 4 B > 4 B >

Why scattering amplitudes?

Theory:

- Experiment:
 - masses
 - decay rates
 - cross-sections

Scattering amplitudes at particle colliders



$$\sigma_{\text{partonic}} = \sigma_{\text{LO}} \alpha_{\text{s}}^{\text{n}} + \sigma_{\text{NLO}} \alpha_{\text{s}}^{\text{n+1}} + \sigma_{\text{NNLO}} \alpha_{\text{s}}^{\text{n+2}} + \dots$$

Images: Shouhua Zhu arXiv:hep-ph/0109269 & CMS arXiv:1412.1633

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- 4 Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
 - Conclusion and future work

Why 5-point QCD amplitudes?

- NNLO phenomenology at the LHC has cleared 2 \rightarrow 2 processes
- \bullet However, 2 \rightarrow 3 processes remain an open problem.
 - e.g. 3-jet production; H + 2 jets; $\gamma \gamma + 1$ jet
- 2-loop amplitudes are the biggest missing ingredient
- Many developments in recent years:
 - Badger, Frellesvig, Zhang (2013)
 - Ita (2015)
 - Badger, Mogull, Ochirov, O'Connell (2015)
 - Gehrmann, Henn, Presti (2015)
 - Dunbar, Perkins (2016)
 - Dunbar, Godwin, Jehu, Perkins (2017)
 - Badger, Brønnum-Hansen, Hartanto, Peraro (2017)
 - Abreu, Cordero, Ita, Page, Zeng (2017)
 - Böhm, Georgoudis, Larsen, Schönemann, Zhang (2018)
 - Kosower (2018)
 - HAC, Lim, Mitov (2018)
 - Badger, Brønnum-Hansen, Gehrmann, Hartanto, Henn, Lo Presti, Peraro (2018)
 ...

- Abreu, Cordero, Ita, Page, Zeng (2018)
- Gehrmann, Henn, Lo Presti (2018)
- Abreu, Page, Zeng (2018)
- Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser (2018)
- Abreu, Cordero, Ita, Page, Sotnikov (2018)
- Badger, Brönnum-Hansen, Hartanto, Peraro (2018)
- Abreu, Dormans, Cordero, Ita, Page (2019)
- Abreu, Dormans, Cordero, Ita, Page, Sotnikov (2019)

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- 4 Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
- Conclusion and future work

Why IBPs?

- The IBPs are linear relations between Feynman integrals
- They contain an incredible amount of information about the problem
- They have been widely successful in the computation of multi-loop QCD amplitudes
- Some problems have so far remained beyond the reach of current IBP-solving methods
 - $\bullet\,$ e.g. 2 \rightarrow 3 at 2 loops; 2 \rightarrow 2 at 3 loops; massive 2 \rightarrow 2 at 2 loops
- Highly desirable to improve methods of solving IBPs
- Note: KIRA v1.1 makes steps in a similar direction

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- 4 Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
- Conclusion and future work

Integration-by-parts (IBP) identities

Generic bare amplitude is a sum of many Feynman integrals

$$M = \sum_{i=1}^{N} f_i I_i$$

• *I_i* are (wlog) <u>scalar</u> Feynman integrals

$$I_i = \int d^d k_1 \dots d^d k_L \left[rac{1}{\Pi_1^{a_i} \Pi_2^{b_i} \dots}
ight]$$
, where $\Pi \sim \left(q^2(p,k) - m^2
ight)$

- N is large: in our 2-loop 5-point case, we have $N \sim \mathcal{O}(10^4-10^5)$
- f_i are rational functions, whereas I_i are dilogs/polylogs/etc.
- Integration-by-parts (IBP) identities:

$$\int d^d k_1 \dots d^d k_L \left[\frac{\partial}{\partial k_j^{\mu}} \left(\frac{v^{\mu}}{\Pi_1^a \Pi_2^b \dots} \right) \right] = 0$$

Hence, many linear relations between integrals.

Integration-by-parts (IBP) identities (continued)

 The challenge: Solve this system of equations to express all integrals in terms of a <u>small</u> basis of <u>master integrals</u>.

$$I_i = \sum_{m=1}^{\hat{N}} c_{i,m} \hat{I}_m$$

- in our 2-loop 5-point case, we have $\hat{N} \sim \mathcal{O}(100)$
- Can hence write original amplitude in terms of master integrals

$$M = \sum_{m=1}^{\hat{N}} \hat{c_m} \hat{l_m}$$
, with $\hat{c_m} = \sum_{i=1}^{N} c_{i,m} f_i$

- In our work we focus on solving the IBPs. Evaluating the masters is a separate problem (but the IBP solutions help here too).
 - In our 5-point case, all planar masters are already known, as well as some non-planars.

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- 4 Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
- Conclusion and future work

Our strategy

- Recall:
 - We want to write each integral in terms of master integrals

$$I_i = \sum_{m=1}^{\hat{N}} c_{i,m} \hat{I}_m$$

We'll use the IBP equations. They are linear and homogeneous.

Our strategy:

- Generate the IBP equations
- Identify the master integrals (straight-forward e.g. using Reduze)
- Pick one master integral. Set all other masters to zero.
- Solve the (greatly simplified!) IBP equations
- This will give the projection of each integral onto the chosen master integral.
- Now repeat for each of the other masters; this way, we build up the full solution (i.e. we obtain each $c_{i,m}$).

Note: we use Laporta algorithm but this is not essential.

Cartoon: Integration-by-parts identities (IBPs)

IBP equations (coefficients not shown)

 Goal: Solve this system of equations to express all integrals in terms of a *small* basis of master integrals.

Cartoon: Our strategy

 Derive projections of the IBP equations onto a single master integral by setting all other master integrals to be zero

 This simplifies the IBP equations because many non-master integrals only project onto a subset of the master integrals

Cartoon: Our strategy (continued)

 By solving these simplified equations, one obtains the projections of all integrals onto a single master integral (coefficients still not shown)

 The full solution to the original IBP equations is obtained by repeating for each of the other master integrals and summing the solutions

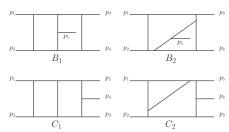
Benefits of this strategy

- Simplifies the problem
 - Many integrals only have projections onto a subset of all the possible masters. (A given integral, *I*, only projects onto a master, *M*, if the propagators of *M* are a subset of the propagators of *I*)
- Parallelisation
 - The IBP equations are "solved" many times once for each master integral. These runs are independent of one another, so they can run in parallel.
 - Run times for different masters vary by several orders of magnitude.
 The overall running time is limited by a handful of 'difficult' masters.
- Reduced memory requirements
 - RAM usage is reduced, since far fewer coefficients need to be kept in memory at one time.

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
- 5 Conclusion and future work

Application to $2 \rightarrow 3$: Setup

- We have implemented our strategy in a private c++ code and applied it to the 2-loop 5-point massless QCD amplitudes
- The most complicated 2-loop 5-point topologies have 8 propagators:



- - Why scattering amplitudes?
- - Why IBPs?
- Application to 2-loop 5-point QCD amplitudes
 - Results

Application to 2 \rightarrow 3: Results

- Full reduction for all planar (C_1 and C_2) integrals that contribute to 2-loop 5-point massless QCD processes.
- Some results for non-planar (B₁ and B₂) topologies:
 - Coefficients of the highest-weight masters, for all integrals with up to 6 numerator powers and up to 1 squared denominator
- Results available to download from:

```
www.precision.hep.phy.cam.ac.uk/results/amplitudes/
```

- Rational expressions are fully expanded
- Files compressed (22GB)

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
- Conclusion and future work

Application to 2 \rightarrow 3: Checks

- ullet Computed qar q o Qar Q and cross-checked against <code>Reduze</code>
- Checked our results in the B₂ topology against those from hep-th/1805.01873 (Böhm et al.)
- C_1 integrals with 5 numerator powers can be related to integrals with fewer numerator powers using hep-th/1009.0472 (Gluza et al.) and hep-th/1804.00131 (Kosower). We carried this out as a check and find full consistency with our solutions.

- Introduction
 - Why scattering amplitudes?
 - Why 5-point QCD amplitudes?
- Integration-by-parts (IBP) identities
 - Why IBPs?
 - Integration-by-parts (IBP) identities
- Our IBP-solving strategy
- 4 Application to 2-loop 5-point QCD amplitudes
 - Results
 - Checks
- Conclusion and future work

Conclusions and future work

- Proposed a new strategy for solving the IBP identities. Particularly useful for multi-scale problems.
- Derived analytic expressions for all integral coefficients needed to construct any planar 2-loop 5-point massless QCD amplitude with quarks and/or gluons. Results are now publicly available.
- Further reading see our paper:

Outlook:

- We are working on the non-planar topologies
- Eventually intend to make our IBP-solving program public
- Ultimately, one would like a closed-form solution to the IBPs. This
 remains an open problem, although we hope our strategy could be
 of some help in this direction.

Section 6

Backup slides

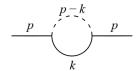
Example: 1-loop bubble

$$\mathcal{I}_{a,b}(p^{2},m^{2}) = \int d^{d}k \frac{1}{\left[k^{2}-m^{2}\right]^{a}\left[(p-k)^{2}\right]^{b}}$$

- Numerators absorbed: take $\int d^d k \left(\frac{N}{\left[k^2 m^2\right]^a \left[(p-k)^2\right]^b} \right)$, where N is:
 - m^2 , p^2
 - $k^2 = (k^2 m^2) + m^2$
 - $k \cdot p = -\frac{1}{2}(p-k)^2 + \frac{1}{2}p^2 + \frac{1}{2}k^2$
 - k^μ:
 - let $\int d^d k \left(\frac{k^{\mu}}{\left[k^2 m^2\right]^a \left[(p-k)^2\right]^b} \right) = Ap^{\mu}$
 - then $A = \frac{1}{p^2} \int d^d k \left(\frac{k \cdot p}{[k^2 m^2]^a [(p k)^2]^b} \right)$
- More propagators upstairs → more complicated integral
- In general, might need extra propagators

Example: 1-loop bubble (2)

further details: see V. A. Smirnov, "Evaluating Feynman Integrals" (2004)



$$\mathcal{I}_{a,b}(p^2,m^2) = \int d^dk rac{1}{\left[k^2 - m^2
ight]^a \left[(p-k)^2
ight]^b}$$

Two IBP identities:

$$\int d^d k \frac{\partial}{\partial k^{\mu}} \left(\frac{p^{\mu}}{\left[k^2 - m^2\right]^a \left[(p - k)^2\right]^b} \right) = 0$$

$$\int d^d k \frac{\partial}{\partial k^{\mu}} \left(\frac{k^{\mu}}{\left[k^2 - m^2\right]^a \left[(\rho - k)^2\right]^b} \right) = 0$$

4 D > 4 B > 4 B > 4 B >

Example: 1-loop bubble (3)

further details: see V. A. Smirnov, "Evaluating Feynman Integrals" (2004)

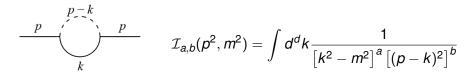
$$\mathcal{I}_{a,b}(p^{2}, m^{2}) = \int d^{d}k \frac{1}{\left[k^{2} - m^{2}\right]^{a} \left[(p - k)^{2}\right]^{b}}$$

- Two IBP identities:

 - $\begin{array}{c} \text{(d} 2a b)\mathcal{I}_{a,b} 2m^2 a\mathcal{I}_{a+1,b} \\ + (m^2 b p^2 b)\mathcal{I}_{a,b+1} b\mathcal{I}_{a-1,b+1} = 0 \end{array}$
- Note: the identities are linear and homogeneous.

Example: 1-loop bubble (4)

further details: see V. A. Smirnov, "Evaluating Feynman Integrals" (2004)



General solution:

$$\bullet \ \mathcal{I}_{a,b} = f_{a,b}(p^2, m^2)\mathcal{I}_{1,0} + g_{a,b}(p^2, m^2)\mathcal{I}_{1,1}$$

Special case: b = 0

- IBPs lead to recurrence relation: $\mathcal{I}_{a,0} = \frac{d-2a+2}{2(a-1)m^2}\mathcal{I}_{a-1,0}$
- Hence, closed-form solution: $\mathcal{I}_{a,0} = \frac{(-1)^a(1-d/2)}{\Gamma(a)(m^2)^{a-1}}\mathcal{I}_{1,0}$

