The High Pressure gas Time Projection Chamber:

A Future Neutrino Detector

Toby Nonnenmacher toby.nonnenmacher14@imperial.ac.uk Joint APP and HEPP Annual Conference 2019

April 8, 2019

Imperial College London

Aims and Objectives

- A High Pressure Time Projection Chamber is a novel possibility for a neutrino detector
 - For example, the official DUNE Near Detector design includes a high pressure gas TPC
- Capable of measuring low momentum outgoing hadrons (typically a few hundred MeV) required for neutrino-nucleus interaction modelling
- To test the HPTPC: Beam test was performed at the T10 Beamline in CERN in August/September 2018
- Innovative off-axis beam technique and moderator used to reduce signal to background fraction and reduce proton momentum measured

Motivation for HPTPC as a Neutrino Detector

Gaseous detectors:

- Low momentum threshold for final state particles
- Fewer readout channels required to resolve a track
- Ability to change target gas

High pressure:

Imperial College

London

Increases target mass
→ sufficient events
when combined with
neutrino beams from
MegaWatt facilities

TPC Design: Charge Readout

London

Toby Nonnenmacher: The High Pressure gas Time Projection Chamber

Charged particles ionise gas

TPC Design: Optical Readout

London

- Avalanche excites gas \rightarrow emits scintillation light
- Optical signal is read by CCD cameras
- CCD cameras sensitive in the 300-800nm range
- Necessary to choose gas such as to optimise both charge gain and optical yield

Prototype HPTPC

- Vessel rated to 5 barG of pressure
- Steel mesh cathode and anodes create drift field and amplification region respectively
- Field cage: 12 copper rings maintain uniformity of the drift field
- 4 CCD cameras image a quadrant of amplification region

Imperial College London

Beam Test Overview

- Beam Test took place at the T10 beamline, East Area at the PS in CERN
- 1 Month of beam from 15 August to 18 September
- Primary beam configuration used 0.8 GeV/c beam
- R&D goal: Test HPTPC prototype to provide proof of concept
- Physics goal: Making measurements of hadronic scattering

Motivation for beam test

- Lack of hadron scattering data in the low proton energy region
- More data can be used to tune nuclear models
- Ability to change target gas helps constrain nuclear models further
- Neutrino generators disagree in predictions at low momentum
- Leads to higher systematic uncertainties in nuclear models for neutrino experiments

Plot courtesy of Pip Hamilton Neut/Genie models differ

Imperial College London

Off-axis angle technique

- Seek to increase the proton ratio while decreasing the proton energy of the beam
- Use of acrylic moderator blocks in front of beamline
- Causes protons to scatter at wider angles than pions
- Moving off axis increases proton:pion ratio
- Trade off between improved Proton:Pion ratio and raw number of particles
- Range of 3-4 degrees chosen for beam test

Imperial College

London

Beam Test Layout

Diagram courtesy of Morgan Wascko

Imperial College London

Time of Flight Systems

- 3 constituents upstream of TPC (S1-3):
 - Plastic scintillator upstream counter (S1) of 4cm x 4cm with trigger counter (S2)
 - Further downstream timing detector (S3) with 20 bars of plastic scintillator with 90ps timing resolution a SHiP prototype from the Université de Genève
- 1 constituent directly behind the TPC vessel
 - Bars are 1cm \times 10cm \times 140cm plastic scintillator with Timing resolution of ${\sim}1\text{ns},$ built by UCL

Images courtesy of Alexander Korzenev and Seb Jones

Imperial College London

Time of Flight Results: S1 to S3

S3 time of flight spectrum (S1 trigger only)

- Proton and Pion peak spread further apart with increased number of moderator blocks
- Protons experience momentum spread
- Effect observed over entire S3 wall

Particle Ratio Results

Plot courtesy of Seb Jones

$Proton/(\pi + \mu)$ ratio within a single spill

- Nearly constant, with low statistics near the end of the spill
- For one block: significant increase in Proton/MIP ratio

compared with previous on-axis measurements

Imperial College London

CCD Image Data Analysis

- Gaussian blurring one method being pursued for image processing
- Reduces effects of charge diffusion in the gas
- This will allow us to pick out local features on top of background noise

Imperial College London

Summary

- An HPTPC is an excellent candidate for future detectors
- A prototype HPTPC has been built and operated in a test beam at CERN
- A moderator and off-axis beam technique were successfully used to increase proton ratio
- Analysis of the data taken at beam test is ongoing
- Now preparing to replace the amplification region with ALICE TPC wire chamber in preparation for DUNE
- Hope to conduct further beam tests in the future

Thanks for listening!

- CERN
- Imperial College
- Lancaster University
- Royal Holloway University

- RWTH Aachen University
- University College London
- University of Geneva
- University of Warwick

Imperial College London

BACKUPS

Imperial College London

HPTPC in Beamline

Imperial College London

Optical Readout

- Electron avalanche excites gas \rightarrow emits γ 's
- Optical signal is read out by CCD cameras
- CCD cameras sensitive in the 300-800nm range
- Light yield can be enchanced with quencher

0.7 ٨. 0.6 0.5 0.4 0.3 0.2 0.1 300 400 500 600 700 800 900 λ (nm)

From Fraga, M. M., et al. "Study of scintillation..." Nuclear Science Symposium, 1999. Conference Record. 1999 IEEE. Vol. 2. IEEE, 1999

Ar emission spectrum (Fraga et al., Trans. Nuc. Sci. Vol 47, 3, 2000)

Motivation

 Sensitivity to oscillation parameters dependent on systematic uncertainties

Imperial College London

TREx

- One method of reconstruction available using the a* algorithm
- Example Monte Carlo to be anlysed by TREx:

Imperial College London

Camera specs

CCD	Read noise (e ⁻)	Read noise (ADU)	Dark current (e ⁻)	Dark current (ADU)	Dark current (e ⁻)	CCD gain (e ⁻ /ADU)
PL0141514	11.2	7.22	1.74 (-25C)	2.7 (-25C)	1.70 (-30C)	1.55
PL0251514	10.2	7.71	0.39 (-25C)	0.6 (-25C)	0.38 (-30C)	1.52
PL0261514	9.6	6.27	0.45 (-25C)	0.7 (-25C)	0.44 (-30C)	1.52
PL0544710	11.3	7.38	26.27(-25C)	40.2 (-25C)	25.74 (-30C)	1.53
Fairchild	7	4.66	0.006 (-60C)	0.01 (-60C)	N/A	1.5

Table 1.7: Manufacturer noise specifications for the CCD's used on the cubic metre detector

Beam Test: Beam conditions

- Beam spill on the order of 500ms
- Approximately 5-10s between spills

From HPTPC Beam test proposal to CERN

Proton and pion profiles across beam spill for run 1187

- Beam has high pion component at low momentum settings
- Pions are a background for p – Ar cross-section measurement

Imperial College London

Downstream Time of Flight

- S4: 1 constituent directly behind TPC vessel, integrated with S1-S3
- Timing resolution of 1ns
- Corresponds to approximately 9cm horizontally
- Bars are 1cm × 10cm × 140cm plastic scintillator

Imperial College London

Upstream Time of Flight

- 3 constituents upstream of TPC (S1-3)
- Plastic scintillator upstream counter (S1) of 4cm × 4cm with trigger counter (S2)
- Further downstream timing detector (S3) with 20 bars of plastic scintillator with 90ps timing resolution
- S3 is a SHiP prototype from the Université de Genève: larger version of that used for the ND280 beam test

Images courtesy of Alexander Korzenev

Imperial College London

Time of Flight Results: S3 to S4

Plot courtesy of Seb Jones

Time of Flight between S3 and S4:

- Left peak corresponding to MIPs
- Right peak corresponding to Protons

Imperial College London

- Nucleons produced in neutrino interactions undergo various interactions in the target nucleus (affecting their kinematics)
- The lack of full understanding of nuclear interactions in the nucleus is a source of systematic uncertainty

Data Comparison

Also interested in comparing variation of the dials to data (done very roughly below)

- Comparison to proton-Carbon data in the low momentum region
- Data taken from RF Carlson: Proton-Nucleus Total Reaction Cross Sections and Total Cross Sections Up to 1 GeV (1996)
 - dials adjusted to give overlap
 - overall scaling = 1.0, QE = 0.9, 1pi = 0.9, 2pi = 1.0

Imperial College London