

Prospects for top-Yukawa coupling and Higgs boson CP at the CLIC e⁺e⁻ collider

CL

Yixuan Zhang University of Edinburgh IOP Joint HEPP and APP Annual Conference 2019, Imperial College London

Outline

CLIC overview

The top Yukawa analysis at 1.4 TeV

- Strategy and Pre-selections
- Event Reconstruction and flavour-tagging
- Multivariant selection (TMVA)
- Results
- CP property of Higgs boson
 - Sample production and cross-section calculation
 - Preliminary sensitivity to CP mixing (crosssection)
 - Up-down asymmetry
 - Preliminary sensitivity to CP mixing (crosssection + up-down asymmetry)

$V_{sr}(\phi) = rq\Lambda$ Hiaqs flavour-changing neutral currents $\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda^2} \sum c_i \mathcal{O}$ **C**.search discovery inert doublet BSN $\cos 2\omega$ precisi

Summary

Compact Linear Collider (CLIC)

380 GeV - 11.4 km (CLIC380) **1.5 TeV** - 29.0 km (CLIC1500) **3.0 TeV** - 50.1 km (CLIC3000)

CLIC380

CLIC1500

CLIC3000

- Submitted 4 reports for European Strategy 2019
- Construction could start ~2025
- Physics could start around 2035
- Running ~9 years for $\sqrt{s} = 380$ TeV
- https://clic.cern/

TOP YUKAWA COUPLING AND CP VIOLATION IN HIGGS – Y.ZHANG

LHC

CERN

Compact Linear Collider (CLIC)

CTF3 facility

Motivation

Pros:

- 1. Strongest Yukawa coupling
- 2. High rates of production of Higgs with top pairs
- 3. Direct probe of CP properties of Higgs boson

Cons:

- 1. Large number of final states
- 2. Large backgrounds, e.g. from $t\bar{t}$

Analysis Strategy

<u>Hadronic channel: 6 j</u>	jets <u>Semi-leptonic</u>		channel: 4 jets	
$tar{t}H$ decay	BR of $t\bar{t}H(bar{b})$	Charged leptons	Channel classification	
$t\bar{t} \rightarrow 6jets + H \rightarrow b\bar{b}$	46%	0	Hadronic	
$t\bar{t} \rightarrow 4jets + 1l + 1\bar{v}_l + H \rightarrow b\bar{b}$	45%	1	Semi-leptonic	
$t\bar{t} \rightarrow 2jets + 2l + 2\bar{v}_l + H \rightarrow b\bar{b}$	9%	>1	Not included	

Backgrounds

07/04/2019

Event reconstruction strategy

BDTG response

The BDTG response for signal and background samples. (Left): Normalised BDTG response.

(Right): Scaled BDTG to number of events expected in 1.5 ab⁻¹ with new set of samples by using the result from (Left).

 $S/\sqrt{S+B}$

Selection efficiency after BDTG cut

Process	Evt in	Evt with	Evt with	Evt pass	Evt pass
	1.5 ab^{-1}	0 Lepton	1 Lepton	Had BDT	SL BDT
tīH, 6 jets, H→bb̄	647	555 (85.9%)	86 (13.4%)	367 (56.8%)	38 (5.91%)
tīH, 4 jets, H→bb̄	623	208 (33.4%)	432 (69.4%)	1 (0.14%)	(270 (43.4%))
tīH, 6 jets, H≁bb	473	276 (58.4%)	143 (30.2%)	54 (11.4%)	11 (2.32%)
tīH, 4 jets, H≁bb	455	70 (15.4%)	237 (52.2%)	8 (1.85%)	22 (4.88%)
tīH, 2 jets, H→bb̄	150	9 (6.18%)	53 (35.6%)	2 (1.65%)	22 (14.8%)
tīH, 2 jets, H≁bb	110	4 (3.90%)	27 (25.0%)	0 (0.11%)	1 (1.19%)
tīZ, 6 jets	2843	2133 (75.0%)	445 (15.7%)	345 (12.1%)	34 (1.21%)
tīZ, 4 jets	2738	571 (20.9%)	1726 (63.0%)	59 (2.14%)	217 (7.94%)
tīZ, 2 jets	659	36 (5.49%)	214 (32.5%)	1 (0.22%)	16 (2.45%)
tībb, 6 jets	824	720 (87.5%)	95 (11.6%)	326 (39.5%)	26 (3.14%)
tībb, 4 jets	794	193 (24.3%)	552 (69.5%)	57 (7.15%)	226 (28.54%)
tībb, 2 jets	191	11 (5.84%)	70 (36.7%)	2 (0.82%)	18 (9.70%)
tī	203700	116181 (57.0%)	76732 (37.7%)	498 (0.24%)	742 (0.36%)
total ttH signal	2458	1123 (45.7%)	978 (39.8%)	433 (17.6%)	365 (14.8%)
total background	211749	119846 (56.6%)	79834 (36.3%)	1287 (0.61%)	1280 (0.60%)
Significance				10.44	9.00

Selection efficiency after BDTG cut

Process	Evt in	Evt with	Evt with	Evt pass	Evt pass
	1.5 ab^{-1}	0 Lepton	1 Lepton	Had BDT	SL BDT
tīH, 6 jets, H→bb̄	647	555 (85.9%)	86 (13.4%)	367 (56.8%)	38 (5.91%)
tīH, 4 jets, H→bb̄	cignal <10/	208 (33.4%)	432 (69.4%)	1 (0.14%)	(270 (43.4%))
tīH, 6 jets, H≁bb	signal<1%	276 (58.4%)	143 (30.2%)	54 (11.4%)	11 (2.32%)
tīH, 4 jets, H≁bb	155	70 (15.4%)	237 (52.2%)	8 (1.85%)	22 (4.88%)
tīH, 2 jets, H→bb		9 (6.18%)	53 (35.6%)	2 (1 _{ttH}	4.8%)
tīH, 2 jets, H≁+		4 (3.90%)	27 (25.0%)	0 22%	,tt `%)
tīZ, 6 jets	N	3 (75.0%)	445 (15.7%)	34	45% ⁵)
tīZ, 4 jets	N	(20.9%		5))
tīZ, 2 jets		5 (5.49%)	214 (32.5%)	17%	<i>()</i>
tībb, 6 jets	tt	20 (87.5%)	95 (11.6%)	326	, <mark>.</mark> %)
tībb, 4 jets	95%	193 (24.3%)	552 (69.5%)	57 (7.	
tībb, 2 jets	191	11 (5.84%)	70 (36.7%)	2 (0.82%)	18 (9.70%)
tī	Before	81 (57.0%)	76732 (37.7%)	498 (I Af	ter 36%)
total ttH signal	2430	1123 (45.7%)	978 (39.8%)	433 (17.070)	505 (14.8%)
total background	211749 1	19846 (56.6%)	79834 (36.3%)	1287 (0.61%)	1280 (0.60%)
Significance				10.44	9.00

Result on top-Yukawa coupling

To translate the <u>cross-section</u> measurement into <u>top-Yukawa coupling</u> at 1.4 TeV, a linear approximation with NLO QCD prediction is used ^[1]:

$$\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 0.503 \frac{\Delta \sigma(t\bar{t}H)}{\sigma(t\bar{t}H)}$$

	$L = 1.5ab^{-1}$	L = 1.5ab ⁻¹	$L = 1.5ab^{-1}$	
	Significance	LΟ Δ <i>σ/σ</i>	NLO $\Delta \sigma / \sigma$	L = 2.5ab ⁻¹ + Polarisation
Hadronic	10.4σ	7 20/	7.5%	2.7%
Semi-leptonic	9.0σ	7.3%		

[1] JHEP 1612 (2016) 075

CP violation in $t\bar{t}H$ production

A model-independent way of parameterising the CP mixing in Higgs:

- $C_{t\bar{t}\Phi} = -ig_{t\bar{t}H}(a+ib\gamma_5)$
- SM: a = 1, b = 0; pure CP-odd: $a = 0, b \neq 0$.

assume $a^2 + b^2 = 1$ with $a = \cos(\phi)$ and $b = \sin(\phi)$; measurement of the mixing angle ϕ indicates the CP properties of Higgs.

CP violation in $t\bar{t}H$ production

A model-independent way of parameterising the CP mixing in Higgs:

- $C_{t\bar{t}\Phi} = -ig_{t\bar{t}H}(a + ib\gamma_5)$
- SM: a = 1, b = 0; pure CP-odd: $a = 0, b \neq 0$.

assume $a^2 + b^2 = 1$ with $a = \cos(\phi)$ and $b = \sin(\phi)$; measurement of the mixing angle ϕ indicates the CP properties of Higgs.

<u>tt̄Φ cross section</u>

 $H \rightarrow \Phi$ as Higgs boson is no longer pure CP-even

• 12 different values of $sin(\phi)$ samples produced

Cross section to CP-mixing sensitivity

- Apply the top-Yukawa analysis procedure to all samples
- Measure $\Delta\sigma/\sigma$ for all $\sin^2(\phi)$ values in the semi-leptonic channel
- Extrapolate to result to include fully-hadronic channel

Cross section to CP-mixing sensitivity

Up-down asymmetry

Up-down asymmetry A_{ϕ} of antitop with respect to the top-electron plane is sensitive to CP violation.

The angle ζ between the antitop and the top-electron plane is given by

$$\sin(\zeta) = \frac{\vec{p}_{\bar{t}}(\vec{q}_{e^-} \times \vec{p}_t)}{|\vec{p}_{\bar{t}}||(\vec{q}_{e^-} \times \vec{p}_t)|}$$

The up-down asymmetry of the $t\bar{t}\Phi$ cross section σ is defined as

$$A_{\phi} = \frac{\sigma(\sin\zeta > 0) - \sigma(\sin\zeta < 0)}{\sigma(\sin\zeta > 0) + \sigma(\sin\zeta < 0)}$$

Component of asymmetry from interference between $t\bar{t}\Phi$ and $ZZ\Phi$!

[1] arXiv:1103.5404v1

e

$\sin\zeta$ and A_{ϕ} with tight cuts

Preliminary results on mixing angle

Summary

- CLIC is a mature option for a high energy electron positron collider to make precision measurements of the top quark, Higgs boson and potential new particles
- My analysis has found $\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 2.7\%$ with polarised beam and an integrated luminosity of 2.5 ab⁻¹ at $\sqrt{s} = 1.4$ TeV at CLIC,
 - HL-LHC projection at 3000 fb⁻¹ measures ~10% precision, ATL-PHYS-PUB-2014-016
 - ILC at 1 TeV found 4.5% with luminosity of 1 ab⁻¹ and unpolarised beam, arXiv:1409.7157
- •Sensitivity to Higgs boson CP mixing is determined $\Delta \sin^2(\phi) \simeq 0.07$ with cross section measurement with luminosity of 2.5ab⁻¹ and polarised beam.
- •An angular distribution using up-down asymmetry has shown an improvement to CP sensitivity up to $\Delta \sin^2(\phi) \approx 0.03$ with luminosity of 2.5ab⁻¹ and polarised beam.

Backup Slides

Result on top-Yukawa coupling

To translate the <u>cross-section</u> measurement into <u>top Yukawa coupling</u> at 1.4 TeV, a linear approximation is used (old, using quadratic fit):

$$\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}} = 0.53 \frac{\Delta \sigma(t\bar{t}H)}{\sigma(t\bar{t}H)}$$

0.0035

Top, W^{\pm} and Higgs Reconstruction

<u>Chi-square method</u> is used to reconstruct the W^{\pm} , top and Higgs candidates by combining the jets.

Semi-leptonic:

$$\chi_6^2 = \frac{(M_{12} - M_W^{\pm})^2}{\sigma_W^2 \pm} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_H)^2}{\sigma_H^2}$$

Hadronic:

$$\chi_8^2 = \frac{(M_{12} - M_W^{\pm})^2}{\sigma_W^2^{\pm}} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_W^{\pm})^2}{\sigma_W^2^{\pm}} + \frac{(M_{456} - M_t)^2}{\sigma_t^2} + \frac{(M_{78} - M_H)^2}{\sigma_H^2}$$

BDTG cut efficiency & optimal significance

Optimal significance obtained for the semi-leptonic channel.

Improvement of top reconstruction

- \rightarrow jetmatch $\chi^2 < 10$ (χ^2 used to match jets into *t*, *W* and *H*)
- \rightarrow remove hadronic taus

Error estimation

 χ^2 template fitting

Sensitivity to CP property

