Near Detectors for Long Baseline Oscillation Experiments

Asher Kaboth 10 April 2019

CP Violation

- There is a hint from T2K that δ_{CP} is not $0/\pi$
- Should we trust this result?

Disappearance Sector

- NOvA results prefer non-maximal mixing
- Very narrow result in Δm^2_{32}
- Should we trust this result?

Prefer NH at 1.8σ (T2K similar)

Oscillation Experiments in a Nutshell

Near Detector 10^{2-3} of km

How many v_{α} here?

$$N = \Phi \times \sigma \times \epsilon \times P(v_{\alpha} \rightarrow v_{\beta})$$

Far Detector

How many v_β here?

Why Is This Hard?

OCD RUNS EVERYTHING

Non-perturbative!
Ancient data!
Axial currents!
Effective parameters!
A-scaling is hard!

Oscillation Experiments in a Nutshell

Near Detector 10^{2-3} of km

How many v_{α} here?

$$N_n = \Phi_n \times \sigma_n \times \epsilon_n$$

$$N_f = \Phi_f \times \sigma_f \times \epsilon_f \times P(\nu_{\alpha} \rightarrow \nu_{\beta})$$

Far Detector

How many v_β here?

Neutrino Beam

Hadronic Uncertainties

- Long baseline
 experiments use
 associated hadronic
 production experiments
 (e.g. NA61/SHINE) to
 constrain pion/kaon
 production
- Still need to extrapolate from phase space of associated experiments to full beam line

Beam Uncertainties

v-N Cross Section Model

 Uncertainties come from underlying model parameters and normalizations

Charged current quasi-elastic

Charged current multinucleon

Deep Inelastic Scattering

Charged Current 1π

11

Mode vs Topology

T2K Off-Axis Near Detector

Beam

Primary Interaction Material: Carbon Secondary Interaction Materials: Oxygen, Lead, Brass, Argon

Interaction in P0D

Interaction in FGD1

Interaction in ECal

Strategy:

Parameterize underlying models

Time Projection Chambers (TPCs)

- Select data samples to optimize constraints
- Propagate uncertainties through parameters

CC0π

$CC1\pi^+$

CC other

ND280 v-mode samples

- Three samples allow sensitivity to different beam energies and cross section interaction modes
- High statistics in neutrino mode provide strong constraints

CC0TT Samples

Before analysis

After analysis

PRELIMINARY

PRELIMINARY

- Clear that data is in better agreement after the analysis
- Adjustment comes through all the modes
- T2K is no longer statistically limited at the near detector!

Propagation of Uncertainty

SK FHC v_{μ} Flux

	\parallel 1-Ring μ \parallel	1-Ring e
Error source	\parallel FHC \parallel RHC \parallel FHC	RHC FHC CC1 π
Beam	$\parallel 4.3\% \mid 4.1\% \parallel 4.4\%$	4.2% 4.4%
Cross-section (constr. by ND280) Cross-section (all)	$\begin{array}{ c c c c c c }\hline & 4.7\% & 4.0\% & 4.8\% \\ & 5.6\% & 4.4\% & 8.4\% \\ \hline \end{array}$	
Beam + Cross-section (constr. by ND280) Beam + Cross-section (all) New E_b fake data parameter	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$	5.7% 5.6%
SK+FSI+SI	$\parallel 3.3\% \mid 2.9\% \parallel 4.1\%$	4.3% 16.6%
Total	5.5% 4.4% 8.8%	7.3% 17.8%

'Fake Data' Analyses

- Generate 'fake data' from alternative models
- Perform full analysis
- Example: Binding energy in nuclei
- Check if the analysis is sensitive to this

NOVA ND

NOVA ND

Strategy:

- Unfold ND data to predict true energy spectrum
- Apply Far/Near ratio and oscillations
- Fold back to reconstructed energy
- Systematics are applied as variations on the true-reconstructed matrices

NOVA ND

22

resolutions

100

Quantile 2

Quantile 1

Reconstructed Neutrino Energy (GeV)

Propagation of Uncertainty

- Statistical uncertainty still dominates for NOvA
- Nevertheless, as datasets increase, this will become increasingly important

Problems: Phase

Space

T2K Run1-9 Preliminar

- Near detectors typically have a restricted phase space relative to their far detectors
- Uncertainties in Q² can badly affect this!

Problems: Energy Spectrum

- Near and far do not see identical fluxes
- Different modes have different energy resolution/biases
- If this is wrong—can produce biases in osc. parameters

Problem: Model Degeneracy

- Example: can shift energy from protons to neutrons and the ND spectrum looks fine via other model compensations
- Impact on oscillation contours is large

Next Generation

- Systematic uncertainties have a huge effect on the sensitivity of future LBL experiments
- We have to do much better!

New Concepts: PRISM

New Concepts: PRISM

- Can construct 'monoenergetic' beams
- Can construct 'preoscillated' beams
- Both HK and DUNE have plans for a PRISM detector

New Concepts: Low Threshold

- Upgrade to T2K
 ND280 to increase efficiency at high angles
- New detector target with much finer granularity

- Replace (most of) P0D with Scintillator Detector
 - + 2 High-Angle TPCs + TOF
 - Improve acceptance for large angle tracks
- Keep current "tracker" [2 FGDs + 3 TPCs] (& upstream part of P0D) as well as ECal, magnet & SMRD

New Concepts: Low Threshold

- Resolution only gets
 us so far—to do better,
 need lower density
- Proposal: High pressure gas TPC
- Begin to distinguish low energy hadrons better mode determination, model constraint

New Concepts: Low Threshold

- DUNE plans to build a HPgTPC a part of the near detector complex
- Prototype detectors are underway both at FNAL and RHUL

~25cm ~40cm

New Concepts: Beam

- Major problem is the fact that near detectors measure flux times cross section
- Separation of the two is desirable!
- Enter electron scattering!

New Concepts: Beam

- MINERvA has show a proof-of-concept analysis of this technique
- Difficulty lies in separating events from intrinsic beam nue, tiny cross section
- Future experiments
 thinking about ways to include this
 measurement in NDs

Conclusions

- The difficulty of QCD modeling produces complex challenges for neutrino physics
- The current generation of near detectors do a great job for their experiments
- Novel techniques and analyses are needed to drive the next generation of experiments