

Short-baseline Neutrinos

Andy Blake, Lancaster University

IOP Conference, Imperial College Tuesday 9th April, 2019

Posters & Talks

Many great posters and talks related to short-baseline neutrinos: (MicroBooNE, SBND, ProtoDUNE, HP-TPC, ARIADNE, DUNE-ND)

POSTERS

- P11. Measuring Space Charge in ProtoDUNE. J. Thompson (Sheffield)
- P28. Measuring Pion-Argon Cross-Section at ProtoDUNE. S. Vergani (Cambridge)
- P29. Track/shower Classification using Deep Learning in LAr-TPC Experiments. S. Vergani (Cambridge)
- P35. SBND Recombination Study for Shower Calorimetry. E. Tyley (Sheffield)
- P39. A High Pressure TPC for Future Neutrino Experiments E. Atkin (Imperial)
- P48. The High Pressure gas TPC: a Future Neutrino Detector T. Nonnenmacher (Imperial)
- P51. Electron Neutrino Selection in MicroBooNE using the Pandora Pattern RecognitionW. van de Pontseele (Oxford)

TALKS

A Preliminary Charged-Current Muon Neutrino Inclusive Selection in SBND. T. Brooks (Sheffield)

An Electron Neutrino Event Selection Procedure in SBND.

D. Barker (Sheffield)

The High Pressure gas TPC: a Future Neutrino Detector.

T. Nonnenmacher (Imperial)

Approaching the Neutrino Mass Problem with a Beam Dump Experiment. T. Boschi (QMUL)

ARIADNE: a 1-ton Dual-Phase LAr-TPC With Optical Readout.

J. Vann (Liverpool)

Electron Neutrino Selection in MicroBooNE using the Pandora Pattern Recognition. W. van de Pontseele (Oxford)

Outline

- Neutrino Oscillations
- Short-baseline Anomalies
 - LSND & MiniBooNE low-energy excess
 - ➤ Gallium & reactor anomalies
- Null Results
 - ➤ Daya Bay & MINOS/MINOS+
 - ➤ Global fit tensions
- New Experiments
 - Short-baseline reactor experiments
 - Fermilab short-baseline programme

(Lots of other interesting threads: neutrino interaction physics, DUNE prototypes, Near Detector concepts for future neutrino experiments, ...)

Neutrino Oscillations

- Our picture of neutrino flavour mixing is almost complete!
- The current generation of experiments has performed precise measurements of the mass splittings and mixing parameters.

> Including first hints of non-zero δ_{CP} !

• A number of well-defined questions remain (mass ordering, θ_{23} octant, precision measurements of δ_{CP} , etc.).

Long-baseline Neutrinos

• Our understanding of neutrino mixing comes from experiments which probe regions of large oscillation probability $(L_v/E_v > \Delta m^2)$:

Short-baseline Neutrinos

- Roles of short-baseline neutrino detectors:
 - Near Detectors for multi-detector oscillation measurements (enabling cancellations of systematic uncertainties).
 - Dedicated measurements of neutrino interaction physics (often with Near Detectors from long-baseline experiments).
 - Studies of anomalous neutrino appearance/disappearance in regions of L_v/E_v where three-flavour oscillation probability is expected to be small [Main focus of this talk].

Sterile Neutrinos?

- Theories of short-baseline neutrino disappearance/appearance typically extend the standard three-flavour oscillation model.
 - If there are additional oscillation modes, then there must be additional mass splittings, and therefore new mass states.
 - Since there are only three active flavours of neutrino, sterile neutrinos are invoked in these extended models.

Neutrino mixing and oscillations driven by sterile neutrinos

$$P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\beta}}}^{\text{SBL}} \simeq \sin^{2} 2\vartheta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$

$$P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\alpha}}}^{\text{SBL}} \simeq 1 - \sin^{2} 2\vartheta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$

$$\sin^{2} 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^{2}|U_{\beta4}|^{2}$$

$$\sin^{2} 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^{2} \left(1 - |U_{\alpha4}|^{2}\right)$$

(Yu-Fung Li, NuFact'2018)

Short-baseline Anomalies

- While the bulk of the world's data agree well with the standard three-flavour formalism, several short-baseline results are in tension with this picture.
- ♦ The anomalous results fall into a number of different categories, involving either v_e disappearance or $v_u \rightarrow v_e$ appearance:

Experiment	Туре	Oscillation mode	Significance	
LSND	Accelerator (DAR)	anti- v_e appearance	3.8 σ	
MiniBooNE	Accelerator (CDL)	ν_{e} appearance	4.5 σ	
	Accelerator (SBL)	anti- v_e appearance	2.8 σ	
GALLEX/SAGE	Source (e-capture)	ν_{e} disappearance	2.8 σ	
Reactors	Radioactive β decay	anti- v_e disappearance	nce 2.8 σ	

• Each of these results can be described by sterile oscillations with $\Delta m^2_{new} \approx 1 \text{ eV}^2$ and a relatively small $\sin^2(2\vartheta_{new})$ - but no model is successful in fitting all the results at once!

LSND

The LSND experiment at Los Alamos observed an excess of anti-ve neutrino events in a decay-at-rest beam of anti-vu neutrinos.

> Appearance signal is consistent with $\Delta m^2 \sim 1 eV^2$ oscillations.

MiniBooNE

- The MiniBooNE experiment at Fermilab was designed to investigate the LSND result.
- > Searching for an excess of v_e events in an accelerator v_{μ} beam.
- > Same L_{v}/E_{v} as LSND, but different neutrino source, baseline, energy and event signature.
- \succ Still operating after 15+ years! (Detector is well-understood and extremely stable)

(Zarko Pavlovic, NuFact'2018)

Booster beam

MiniBooNE

- MiniBooNE observes a low energy v_e excess in both neutrino and antineutrino running modes.
- Including the latest data, significance of excess is now approaching 5σ.
- A robust analysis:
- All major backgrounds are measured in data and their errors are constrained.
- Neutrino flux model also based on real data (HARP).
- Reconstruction and analysis techniques have stood the test of time.

MiniBooNE

Gallium Anomaly

- The GALLEX and SAGE experiments were designed for the radiochemical detection of solar neutrinos.
- The detectors were calibrated using the radioactive sources ⁵¹Cr and ³⁷Ar, which emit neutrinos via electron capture.

Reactor Antineutrino Anomaly

- The measured reactor anti-v_e flux is ~6% below the theoretical prediction.
- > Corresponds to ~2.8 σ effect, depending on exact uncertainties.
- > Consistent with rapid oscillations $(\Delta m^2 \sim 1-10 \text{eV}^2)$.
- > Anomaly arose following recalculation of fluxes (Huber & Mueller, 2011).

Null Results: Daya Bay

- However, recent reactor neutrino measurements by Daya Bay disfavour both the reactor anomaly and sterile neutrino hypothesis.
- Detailed analysis of fission isotope yields indicates that an incorrect prediction of ²³⁵U is the primary source of the reactor anomaly.
- > An analysis of the data assuming a minimal 3+1 model of sterile neutrinos yields no evidence of oscillations at $\Delta m^2 < 0.2 \text{ eV}^2$.

g

Null Results: v_{μ} disappearance

- No evidence for non-standard oscillations in v_{μ} disappearance.
- > This is an important null result, as v_{μ} disappearance is a prerequisite for v_{e} appearance!
- ➤ In particular, MINOS & MINOS+ and IceCube strongly disfavour sterile neutrino mixing across a range of Δm² values.

Null Results: Joint Fit

Can probe v_µ→ v_e appearance signal by combining measurements of accelerator v_µ disappearance and reactor anti-v_e disappearance:

A joint analysis of MINOS/MINOS+, Daya Bay and Bugey-3 excludes most of the LSND/MiniBooNE region, assuming a 3+1 model.

Global Fits

Attempts to fit the world's neutrino data assuming a 3+1 model do not produce a clear or consistent picture.

- ➤ Some of the issues:
 - Tension between reactor and gallium disappearance data.
 - MiniBooNE low-energy data is a poor fit to the 3+1 model.
 - Severe tension between ν_e data and ν_μ disappearance data.

M. Dentler et al. arXiv 1803.10661

New Experiments

A new programme of neutrino experiments is now taking shape, with the goal of addressing the short-baseline anomalies.

> Reactor antineutrino anomaly:

- Perform model-independent searches for sterile neutrinos, by measuring relative spectral distortions at different baselines.
- Extend L/E reach of reactor programme.

⇒ Several new short-baseline experiments in progress.

> Accelerator $v_{\mu} \rightarrow v_{e}$ appearance:

- Determine whether low-energy excess is e-like or γ -like (i.e. ν_e appearance or anomalous NC backgrounds).
- Perform multi-detector search for short-baseline oscillations (where systematics cancel, like long-baseline programme).

⇒ Fermilab short-baseline neutrino programme.

Reactor Programme

Experiment	Reactor	Baseline (m)	Overburden (m.w.e.)	Segmented	Energy resolution (@ 1 MeV)
NEOS (South Korea)	LEU 2.8 GW	23.7	~20	none	5%
DANSS (Russia)	LEU 3.1 GW	11 – 13	~50	2D	17%
SoLid (UK Fr Bel US)	HEU 70 MW	6 - 9	~10	3D	14%
STEREO (France)	HEU 58 MW	9 - 11	~15	1D	8%
Neutrino-4 (Russia)	HEU 100 MW	6 - 12	~5	2D	
PROSPECT (USA)	HEU 85 MW	7 - 12	<1	2D	4.5%

Global efforts are using a wide variety of experimental techniques

(Jeremy Gaison, NuPhys'2018)

Power Reactor

Research Reactor

NEOS

- NEOS operates 24m from the Hanbit-5 reactor (Yeong-gwong, Korea) using a 1-ton Gd-loaded scintillator detector.
 - ➤ Phase 1: Sep'2015 May'2016
 - No evidence for sterile neutrinos (disfavour RAA best fit at 90% CL)
 - Phase 2: Ongoing since 2018
 - Plan to operate over a full fuel cycle.

DANSS

- DANSS operates at the Kalinin reactor (Russia) using a 1m³ highly-segmented plastic scintillator detector.
- Detector is moveable! Distance to core can be varied from 10.7m to 12.7m.
- Oscillation analysis based on ratio of "top" and "bottom" energy spectra.
- No evidence for oscillations.

Broad Program!

Andy Blake, Lancaster University

FNAL Short-baseline Program

- The short-baseline neutrino program at Fermilab aims to definitively understand the MiniBooNE low-energy excess:
- > Use the well-characterised Booster accelerator neutrino beam.
- > Deploy three detectors based on liquid argon TPC techology.

SBN Goals

Phase 1 – MicroBooNE

> Understand the nature of the MiniBooNE low-energy excess, using the same accelerator neutrino beam.

Phase 2 – SBND & ICARUS

Search for short-baseline oscillations in both the appearance and disappearance channels.

Prepare ground for DUNE:

- ➤ Further develop LAr-TPC technology.
- Measure v-Ar cross-sections at energies of relevance to DUNE.

LAr-TPC Detectors

- The superb spatial and calorimetric resolution of LAr-TPC detectors offers excellent reconstruction and particle identification capabilities.
 - > Enables e/γ separation (crucial for characteristion of low-energy excess and precision searches for short-baseline oscillations).

R. Acciarri et al, Phys. Rev. D 95, 072005 (2017)

MicroBooNE

- First large LAr-TPC detector in an intense neutrino beam.
 - > 87-ton active mass.
- Stable operation since October 2015.
- Understanding detector effects:
 - Noise, diffusion, recombination, space charge (crucial for physics!)
- Significant progress on automated neutrino event reconstruction.
- First physics results:
 - $\succ v_{u}$ CC differential cross-section.
 - > CC π^0 total cross-section.
- First fully-automated v_e selections:
 - > Towards low-energy excess analysis.

SBND

- The Short Baseline Near Detector will sit upstream of MicroBooNE, and will measure the beam before oscillations.
- SBND will also amass the largest sample of v-Ar interactions in the world for the foreseeable future.
 - > Expect 7M neutrino interactions, including 12,000 v_e CC events.

(Andzej Szelc, NuINT'2018)

Charged Current						
$ u_{\mu}$ Inclusive	5,389,168					
$ ightarrow 0\pi$	3,814,198					
$\longrightarrow 0p$	27,269					
$\longrightarrow 1 p$	1,261,730					
$\longrightarrow 2p$	1,075,803					
$\longrightarrow \geq 3p$	1,449,394					
$ ightarrow 1\pi^+ + X$	942,555					
$ ightarrow 1\pi^- + X$	38,012					
$ ightarrow 1\pi^0 + X$	406,555					
$ ightarrow 2\pi + X$	145,336					
$\rightarrow \geq 3\pi + X$	42,510					
$ ightarrow K^+K^- + X$	521					
$ ightarrow K^0 ar{K}^0 + X$	582					
$ ightarrow \Sigma_c^{++} + X$	294					
$ ightarrow \Sigma_c^+ + X$	98					
$ ightarrow \Lambda_c^+ + X$	672					
ν_e Inclusive	pprox 12,000					
Neutral Current						
Inclusive	2,170,990					
$ ightarrow 0\pi$	1,595,488					
$ ightarrow 1\pi^{\pm} + X$	231,741					
$ ightarrow \geq 2\pi^{\pm} + X$	343,760					
$ ightarrow e(^-)$	374					

SBND Construction

UK have a key role in all aspects of SBND - particularly construction.

Building is completed, and cosmic taggers installed (and taking data!)
 UK-built Cathode and Anode Plane Assemblies shipped to Fermilab.
 First data expected in 2020

ICARUS

- ICARUS will be the Far Detector of the SBN program.
 - Previously operated at Gran Sasso, but now refurbished and installed in the Booster beamline.
- Given its large active mass (476-ton) and far location, ICARUS will enable a precision search for short-baseline oscillations.
- Status:
 - Installation of two modules was completed in August 2018.
 - > Ongoing work includes cryogenics, cabling, etc.

Data-taking planned in 2019.

(Serhan Tufanli, NuPhys'2018)

Sensitivity (ve appearance)

- A massive Far Detector with a Near Detector of similar technology reduces both statistical and systematic uncertainties.
- SBN detectors enable 5σ coverage of the 99% C.L. allowed region of the LSND signal and the global best-fit.

Andy Blake, Lancaster University

Sensitivity (v_{μ} disppearance)

- The SBN program will also perform a precision search for ν_μ disappearance, pushing back the current limits.
- This is a critical analysis in verifying any oscillation hypothesis.

Andy Blake, Lancaster University

Summary

- Our picture of standard neutrino oscillations is almost complete.
 However, short-baseline anomalies are observed.
 - Sterile neutrinos are typically used to describe anomalous appearance and disappearance.

◆ Global fits to world data do not yield a consistent picture.
 ≻ e.g. no evidence for short-baseline oscillations in

- v_{μ} disappearance data.
- The new short-baseline programs will deliver precision data that will shed new light on these anomalies.
 - > Short-baseline reactor neutrino experiments.
 - ➤ Fermilab short-baseline neutrino program.
- ♦ Watch this space!