

Reinhild Yvonne Peters

The University of Manchester

European Research Council Established by the European Commission

The Large Hadron Collider

- Proton-proton and heavy ion (Pb+Pb) collisions
- pp collision Run I: 2011: 7 TeV; 2012: 8 TeV
- pp collision Run II: until end of 2018 with 13 TeV
- Special runs: 900 GeV, 2.76 TeV and 5.02 TeV

The Large Hadron Collider

- Proton-proton and heavy ion (Pb+Pb) collisions
- pp collision Run I: 2011: 7 TeV; 2012: 8 TeV
- pp collision Run II: until end of 2018 with 13 TeV
- Special runs: 900 GeV, 2.76 TeV and 5.02 TeV

Overall view of the LHC

- 27 km ring
- ~100m under surface
- 1232 dipole magnets
- Magnets getting cooled to 1.9K
 → colder than outer space
 - \rightarrow LHC: coolest ring in the universe!

The LHC Experiments

More LHC Experiments

Yvonne Peters

All Experiments

- ATLAS & CMS: general purpose detectors
- LHCb: forward spectrometer
 - \rightarrow focused on b & c physics
- ALICE: study heavy ion interactions
 - \rightarrow quark-gluon plasma
- Smaller experiments:
 - Totem: forward detectors (around CMS)
 - LHCf: forward detector (around ATLAS) → both for forward physics
 - MoEDAL: near LHCb
 - Search for magnetic monopoles

All Experiments

- ATLAS & CMS: general purpose detectors
- LHCb: forward spectrometer
 → focused on b & c physics
- ALICE: study heavy ion interactions
 - → quark-gluon plasma
- Smaller experiments:
 - Totem: forward detectors (around CMS)
 - LHCf: forward detector (around ATLAS) → both for forward physics
 - MoEDAL: near LHCb
 - Search for magnetic monopoles
- All quite interesting
 - This talk: focused on ATLAS & CMS

The Standard Model

- Standard Model of Particle Physics: our best current description of matter and its interactions
 - Since 2012: technically completed with the Higgs sector
- What are "standard model" measurements?
 - Measurements of free parameters of the SM
 - Measurements of standard model processes
 - Scrutinizing the SM to find hint for new physics

The Standard Model

- Standard Model of Particle Physics: our best current description of matter and its interactions
 - Since 2012: technically completed with the Higgs sector
- What are "standard model" measurements?
 - Measurements of free parameters of the SM
 - Measurements of standard model processes
 - Scrutinizing the SM to find hint for new physics

- What are "standard model" measurements in this talk?
 - Everything above
 - Minus Higgs sector (see Trevor's talk)
 - Minus "flavour" sector (see Sneha's talk)
 - Minus everything not done at LHC (e.g. neutrino sector, g-2,...)
 - Given it is one talk and not whole conference: selected topics only

SM Measurements

• Start big, go small

Yvonne Peters

SM Measurements

Grouping

SM Measurements

Grouping

Electroweak and Vector Bosons

- Precision electroweak measurements: test of the SM
- Several new studies of vector bosons
 - Test of gauge symmetry and search for anomalous couplings
- VV production: WZ (cross section and polarization)
- VBF: EW W production
- VBS: Same sign WW, WZ
- VVV production:

 W^+

 W^{-}

• WWW, WWZ, WZZ

Z

W

W

q

MANCHESTER 1824 New Vector Boson Measurements

- Measurement of WZ production
 - Measurement of gauge boson polarization
- Observation of electroweak VBS WZ production
- Observation of VBS same sign WW production
- Measurement of electroweak VBF W production
- Measurement of 4-lepton invariant mass spectrum
- Search for anomalous electroweak production of WW/WZ/ZZ

March 2019

Yvonne Peters

CMS Preliminar

VVV production sensitive to triple and quartic gauge couplings

- Deviations from SM: can provide hints of NP at higher scales
- Complex analyses
 - Consider different signatures
 - Good estimation of backgrounds crucial
- New analyses by ATLAS and CMS

- New CMS measurement of WWW production
- Result: 34% of SM prediction

 $\sigma_{\rm WWW} = 173^{+326}_{-173} \,\rm fb$

- Prediction: $\sigma_{WWW} = 509 \pm 13 \text{ fb}$
- Interpretations
 - 1. Limits on anomalous quartic gauge couplings
 - 2. Limits on axion-like particles

Anomalous coupling	Allowed range (TeV ⁻⁴)	
	Expected	Observed
$f_{\rm T,0}/\Lambda^4$	[-1.3, 1.3]	[-1.2, 1.2]
$f_{\rm T,1}/\Lambda^4$	[-3.7, 3.7]	[-3.3, 3.3]
$f_{\rm T,2}/\Lambda^4$	[-3.0, 2.9]	[-2.7, 2.6]

CMS-PAS-SMP-17-013

Events / 10 GeV

40

Data / Pred

0.

- First evidence for production of 3 massive vector bosons by ATLAS
 - WWW and WVZ
 - Usage of BDT in WVZ extraction
- Split into 11 signal regions

- 4σ evidence for VVV
- Measured cross sections in agreement with SM prediction

 $\sigma_{\rm WWW} = 0.68^{+0.23}_{-0.21} \, \rm pb$

 $\sigma_{\rm WWZ} = 0.49^{+0.20}_{-0.18} \, {\rm pb}$

arXiv:1903.10415

Top Results

- Top quark: heaviest known elementary particle
 - Decays before hadronization effective study of "bare" quark
 - Study of strong and electroweak interactions
- Many measurements of cross sections and properties ongoing
 - And searches for new physics (FCNC, resonances, MHDM)
- So far mostly compatible with SM predictions

Spin Correlations

- Top quarks: decay before fragmentation
 - Spin information preserved in decay products
- Hadron colliders: top quarks produced unpolarized, but
 - New physics could induce polarization
 - For example: new physics can cause forward-backward asymmetry \rightarrow more left-handed top quarks
 - Correlation between top and antitop quark can be measured

Spin Correlations

- Measured spin correlation can change
 - Due to different decay

Analysis Strategy

- Highest spin analyzing power: leptons form top decay
 - Use dileptonic tt events
 - Very clean samples
- Use $\Delta \phi$ between both leptons
 - No kinematic event reconstruction required
- - For example neutrino weighting in ATLAS
- Correct for detector effects
 - Parton and particle level distributions

Measured Distributions

- Both ATLAS & CMS: fitted spin correlation higher than expected
 - ATLAS: 3.2 sigma from SM prediction of Powheg MC

More measured distributions

- Result caused interest in field → new theory predictions
- NLO+EW agrees better with measurement, NNLO (but no EW corrections) worse again
 - NLO+EW: large scale uncertainties
 - Still open riddle what's exactly going on!
 - Need more calculations/measurements?
- Interpretations done in terms of EFT and SuSy models

MANCHESTER

arxiv:1903.07570

Other Measurements

- More "direct" spin correlation measurement: Spin density matrix elements
 - Challenge: requires full event reconstruction
- ATLAS &CMS: Unfolded distributions extracted

MANCHESTER

Other Spin Measurements

- All spin-density matrix elements measured
 - More to do to improve sensitivity

Still more to do to understand the riddle of tt spin correlations!

Heavy Ions

- LHC collisions: p+Pb, Pb+Pb, Xe+Xe + high-multiplicity pp
 - Heavy Ion programme, mainly with Pb-Pb
 - 2017: few hours of Xe-Xe collisions
- Main goal of heavy ion collision programme: understand quark gluon plasma

Also possible to use heavy ions as generators for "photon beams"

AI I-PRFI -153079

Light-by-Light

- Process $\gamma \gamma \rightarrow \gamma \gamma$: forbidden in classical theory of electrodynamics
 - Boosted protons/heavy ions: source of quasi-free photons
 - Flux scales with Z² per beam -> Z⁴ total
 → cross section strongly enhanced in heavy ion collisions
- Studied by CMS and ATLAS in Pb+Pb collisions

Light-by-Light

- Extraction of cross section in small region of photon acoplanarity
 - $Aco = (1 |\Delta \varphi / \pi|)$
- Latest measurement by ATLAS (1.73 nb⁻¹ data): Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions

 $\sigma = 78 \pm 13 \text{ (stat)} \pm 8 \text{ (syst)} \text{ np (Prediction: } \sigma = 49 \pm 5 \text{ np)}$

QCD Measurements

- Various analyses of jet substructures and jet topologies!
- All interesting to
 - Understand QCD
 - Constrain PDFs better
 - Understand boosted topologies
- Steady progress towards more detailed understanding of QCD and improved boosted tagging

Summary

- SM measurements: active, diverse field of research
- Precision measurements: way to go to search for new physics
 - Model independent
 - Usable for theorists (unfolded distributions)
 - EFT interpretations possible
- Many new sensitive results
 - too many to squeeze into 25 minutes!

- Examples shown:
 - First evidence for production of 3 massive vector bosons

MCK, COMA20H

JUST KEEPS CHUGGING ALONG!

- Sensitive to non-Abelian gauge structure of the SM
- Spin correlations in $t\bar{t} \rightarrow trying$ to solve the "riddle of $\Delta \phi$ "
- Observation of light-by-light scattering → LHC as photon-collider
- Expect more "let's break the SM" fun with Run III soon!

Backup

Boosting algorithms

Boosting algorithms important

- \blacklozenge Higher collision energy \rightarrow more events can be boosted
- \blacklozenge Production of heavy particles \rightarrow decay products can be boosted \rightarrow results in boosted regimes

