New Physics with Muons g-2, CLFV and more

Gavin Hesketh IoP HEPP Annual Meeting 8/4/19 Thanks to Becky Chislett, Mark Lancaster, Yoshi Uchida, Joost Vossebeld

New physics must exist:

- dark matter, hierarchy problem, matter-antimatter asymmetry, neutrino masses, strong CP, gravity....

New physics must exist:

- dark matter, hierarchy problem, matter-antimatter asymmetry, neutrino masses, strong CP, gravity....

There have been some surprises from the lepton sector:

- neutrino masses
- proton radius puzzle
- semi-leptonic hadron decays
- 3.7σ effect in muon g-2

Lepton g-2 & flavour violation in many BSM models - linked to leptogenesis of baryon asymmetry

This talk:

- Fermilab Muon g-2
- CLFV: Mu2e, CŎMET, Mu3e
 - ... + a few other experiments

Part 1: Muon g-2 GIZMODO VIDEO REVIEW SCIENCE 109 FIELD GUIDE EARTHER DESIGN PALEOFUTURE PHYSICS Why Particle Physicists Are Excited About This Mysterious Inconsistency Ryan F. Mandelbaum 7/03/18 1:30pm Filed to: PARTICLE PHYSICS ~ Science Q E Log in | My account | Contact us Become a member Renew my subscription | Sign up for newsletters CINN

The magnetism of muons is measured as the short-lived particles circulate in a 700-ton ring. FERMILAB

Renewed measurements of muon's magnetism could open door to new physics

Forbes

6,854 views | Sep 8, 2018, 10:00am

Ask Ethan: Does The Measurement Of The **Muon's Magnetic Moment** Break The Standard Model?

 (\cdot)

Scientific breakthrough could be as simple as measuring the wobble of a muon

By Don Lincoln

Home

Updated 1648 GMT (0048 HKT) February 13,

2018

We Asked Celeb Physicist Brian Cox About Flat Earth Conspiracies, the ... gizmodo.com

) G. Hesketh

UCL

Spin precession of the magentic moment around external field:

 $\omega_s = \frac{gqB}{2}$ 2 m

The g-factor of charged leptons: - g = 2 (Dirac)

6 G. Hesketh

Spin precession of the magentic moment around external field:

g-2

$$\omega_{s} = \frac{gqB}{2m} = \frac{(2+2a)}{2} \frac{qB}{m}$$

The g-factor of charged leptons: - g = 2 (Dirac)

+ $\alpha/2\pi$ (Schwinger)

+ *up to O(5) in QED* 12,672 diagrams! arXiv:1712.06060

Anomalous term, a=(g-2)/2, contains all loops – QED dominates for electrons

Recent measurement: $1/\alpha = 137.035999046(27)$ *Science, 13 V360, 6385, 2018* → new prediction: $a_e = 0.00115965218161(23)$ PRD 97(2018)036001 ++...

Electrons:

prediction: $a_e = 0.00115965218161(23)$ PRD 97(2018)036001

QCD and EWK loops become important for heavier leptons ... and new physics may enter @ $(m_{lepton} / M_{np})^2$

taus?

- prediction: $a_{\tau} = 0.00117721(5)$ Mod.Phys.Lett.A22:159-179,2007

- measured: $-0.052 < a_{\tau} < 0.013$

Delphi Collaboration, Eur.Phys.J.C35:159-170,2004

Electrons:

prediction: $a_e = 0.00115965218161(23)$ PRD 97(2018)036001

QCD and EWK loops become important for heavier leptons ... and new physics may enter @ $(m_{lepton} / M_{np})^2$

taus?

- prediction: $a_{\tau} = 0.00117721(5)$ Mod.Phys.Lett.A22:159-179,2007

- measured: -0.052 < a_t < 0.013 Delphi Collaboration, Eur.Phys.J.C35:159-170,2004

muons!

Long-standing tension: - prediction: $a_{\mu} \sim 0.00116591821(36)$ KNT18, PRD97, 114025 - measured: $a_{\mu} = 0.00116592089(63)$ PRD 73(2006)072003 $\rightarrow 3.7\sigma$ difference

Electrons:

prediction: $a_e = 0.00115965218161(23)$ PRD 97(2018)036001 measured: $a_e = 0.00115965218073(28)$ PRL 100(2008)120801 $\rightarrow 2.40$ difference

QCD and EWK loops become important for heavier leptons ... and new physics may enter @ $(m_{lepton} / M_{np})^2$

taus? - prediction: $a_{\tau} = 0.00117721(5)$ Mod.Phys.Lett.A22:159-179,2007 - measured: $-0.052 < a_{\tau} < 0.013$ Delphi Collaboration, Eur.Phys.J.C35:159-170,2004

muons!

Long-standing tension: - prediction: $a_{\mu} \sim 0.00116591821(36)$ KNT18, PRD97, 114025 - measured: $a_{\mu} = 0.00116592089(63)$ PRD 73(2006)072003 $\rightarrow 3.7\sigma$ difference

Fermilab Muon g-2

UCL

Fermilab Muon g-2 experiment (E989)

factor 4 improvement over Brookhaven (E821) result
precision of 140 ppb

 $BNL \rightarrow FNAL$ [50 (stat) + 33 (syst) $\rightarrow II$ (stat) + II (syst)] x IO^{-II}

34 institutes, 185 collaborators UK: Lancaster, Liverpool, Manchester, UCL - Spokesperson, Run Coordinator, DAQ experts

G. Hesketh

II

Measuring Muon g-2

UCL

Put muons in a magnetic field, measure precession frequency

$$\omega_{s} = \frac{gqB}{2m} = \frac{(2+2a_{\mu})}{2}\frac{qB}{m} = (1+a_{\mu})\frac{qB}{m}$$

12 G. Hesketh

Measuring Muon g-2

UCL

Put muons in a magnetic field, measure precession frequency

$$\omega_{s} = \frac{gqB}{2m} = \frac{(2+2a_{\mu})}{2}\frac{qB}{m} = (1+a_{\mu})\frac{qB}{m}$$

Storage ring cyclotron frequency:

$$\omega_c = \frac{qB}{m} \quad \Rightarrow \quad \omega_a = \omega_s - \omega_c = a_\mu \frac{qB}{m}$$

Electric focusing fields introduce further coupling: Use "magic momentum" 3.09 GeV

$$\omega_a = -\frac{q}{m} \left[a_{\mu} B - \underbrace{a_{\mu} - \underbrace{I}_{\chi^2 - I}}_{\chi^2 - I} \frac{\beta \times E}{\zeta} \right]$$

Main energy measurement made using 24 calorimeters - fast response lead-flouride Cherenkov crystals (9x6 crystals, each 25 x 25 x 140 mm), resolution 2.3% at 3 GeV

15

Improved Wiggle

UCL

UK contributed new tracking detectors in front of two calorimeters - 8 modules, 4 rows (2 x stereo) per module, 32 straws per row

Improved Wiggle

G. Hesketh

16

G. Hesketh

Status

UCL

First data-taking run complete:

- 5 months running, > 2x Brookhaven stats (took 5 years!)
- publish in 2019 (currently still blinded)
- run 2 underway

Target for end 2020: 20 x BNL

 \rightarrow could push significance to ~5-10 σ

Further experimental confirmation? → *Planned g-2 experiment at J-PARC* - different techniques, different systematics

UCL

Further experimental confirmation? → *Planned g-2 experiment at J-PARC* - different techniques, different systematics

Muon g-2 theory initiative underway: https://indico.him.uni-mainz.de/event/11/overview

SUSY?

- Needs $\mu > o$, 'light' SUSY-scale (Λ) and/or large tan β ...already ruled out by the LHC?

Many other ideas out there, eg:

- I TeV Leptoquark Bauer + Neubert, PRL 116 (2016)
- 2 Higgs doublet model Stockinger et al., JHEP 1701 (2017) 007
- axion-like particle Marciano et al, PRD 94 (2016) 115033
- dark photon eg Feng et al, PRL 117 (2016) 071803

 $a_{\mu}^{\text{SUSY}} \simeq sgn(\mu) \, 130 \times 10^{-11} \, \tan \beta \left(\frac{100 \, \text{GeV}}{\Lambda_{\text{SUSY}}} \right)^2$

See also Thomas Teubner's talk at UK HEP Forum, Nov 2018

SUSY?

- Needs $\mu > o$, 'light' SUSY-scale (Λ) and/or large tan β ...already ruled out by the LHC?

Many other ideas out there, eg:

- I TeV Leptoquark Bauer + Neubert, PRL 116 (2016)
 2 Higgs doublet model Stockinger et al., JHEP 1701 (2017) 007
 axion-like particle Marciano et al, PRD 94 (2016) 115033
- dark photon eg Feng et al, PRL 117 (2016) 071803

 $a_{\mu}^{\text{SUSY}} \simeq sgn(\mu) \, 130 \times 10^{-11} \, \tan \beta \left(\frac{100 \, \text{GeV}}{\Lambda_{\text{SUSY}}}\right)^2$

See also Thomas Teubner's talk at UK HEP Forum, Nov 2018

Complementary measurements needed to resolve model dependency if signal confirmed

If tension resolved, will set tight limits on these new physics scenarios - will also want experiments that can probe higher mass scales in search for new physics

 \rightarrow EDMs, CLFV experiments

Part 2: Electric Dipole Moments

Fundamental particles can also have an EDM - zero at tree level in SM

- can be boosted by BSM loops

Existence of $EDM \rightarrow additional$ source of CP violation

Part 2: Electric Dipole Moments

Fundamental particles can also have an EDM - zero at tree level in SM - can be boosted by BSM loops

Existence of $EDM \rightarrow additional$ source of CP violation

→ *Fermilab g-2 will give 100x improvement in muon EDM limit* - non-zero EDM would cause to out-of-plane precession - an upgrade (24 x new trackers) would push limit further...

Development work for proton EDM ring underway - part of CERN's "Physics Beyond Colliders" programme.

CLFV decay

Neutrino oscillations violate lepton flavour conservation
→ technically possible in charged lepton sector
...but suppressed by ~10⁻⁵⁰

Part 3: Charged Lepton Flavour Violation

Neutrino oscillations violate lepton flavour conservation
→ technically possible in charged lepton sector
...but suppressed by ~10⁻⁵⁰

Put BSM physics in the loop \rightarrow increase the rate

CLFV decay

Any observation of CLFV is new physics!

<u>+UCL</u>

Could show limits on:

- leptoquarks, compositeness, Higgs doublets, heavy neutrinos...

Instead, parametrise using an effective Lagrangian de Gouvea & Vogel, arXiv 1303.4097

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + h.c.$$
$$\frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left(\bar{u}_L \gamma^{\mu} u_L + \bar{d}_L \gamma^{\mu} d_L \right) + h.c. .$$

Step-change in sensitivity in coming years

... probing mass scales up to 10,000 TeV

MEG-II @ PSI:

physics in 2019
x10 on limit
→ 10⁻¹⁴ after 3 years
II institutes, 75 collaborators
no UK involvement

MEG-II @ PSI: - physics in 2019 - x10 on limit \rightarrow 10⁻¹⁴ after 3 years II institutes, 75 collaborators - no UK involvement

Mu2e @ FNAL COMET @ JPARC

- starting 2022 /2020
- x10⁴ on limit

 \rightarrow 10⁻¹⁷ 4 yrs, COMET phase 2 Mu2e:- L'pool, Manchester, RAL, UCL COMET: Imperial

MEG-II @ PSI: - physics in 2019 - x10 on limit \rightarrow 10⁻¹⁴ after 3 years 11 institutes, 75 collaborators - no UK involvement

Mu2e @ FNAL COMET @ JPARC

- starting 2022 /2020
- x10⁴ on limit

 \rightarrow 10⁻¹⁷ 4 yrs, COMET phase 2 Mu2e:- L'pool, Manchester, RAL, UCL COMET: Imperial

Mu3e @ PSI
phase 1 (2020) & 2 (2025)
x10⁴ on limit

→ 10⁻¹⁶ after phase 2

II institutes, 60 collaborators
Liverpool, Bristol, Oxford, UCL

MEG-II @ PSI: - physics in 2019 - x10 on limit \rightarrow 10⁻¹⁴ after 3 years 11 institutes, 75 collaborators - no UK involvement

- Muze @ FNAL COMET @ JPARC
- starting 2022 /2020
- x10⁴ on limit
- → 10⁻¹⁷ ~4 yrs, COMET phase 2 Mu2e:- L'pool, Manchester, RAL, UCL COMET: Imperial

Muze @ PSI
phase 1 (2020) & 2 (2025)
x10⁴ on limit

→ 10⁻¹⁶ after phase 2

II institutes, 60 collaborators
Liverpool, Bristol, Oxford, UCL

Complementary experiments: - Mu2e/COMET: quark and lepton couplings - Mu3e purely leptonic, can also search for dark photons, ALPS, etc

One CLFV interaction in 10¹⁷ muon decays is like...

looking for one specific grain of sand

UCL

Stop muons on an Al target

- x-ray emission from capture \rightarrow normalisation

 $E_e = m_{\mu} - E_{bind} - E_{recoil} \\= 105.67 - 0.47 - 0.22 MeV \\= 104.98 MeV$

UCL

Stop muons on an Al target

- x-ray emission from capture \rightarrow normalisation

Signal of neutrino-less conversion: mono-energetic electron

COMET

Muon lifetime on Al: 864 ns

Prompt backgrounds:- Curved solenoid transport channel

- Pulsed beam with strong extinction factor ($<10^{-9}$)

8 GeV (56 kW) Proton Beam

> Aluminium Muon-Stopping Target

π/μ Transport Solenoid

COMET Phase 2 (2025)

Straw Tracker & Crystal ECAL

Michel Decay - rate: ~ 1

UCI

Signal - push limit to 10⁻¹⁶

Mu3e

e

e

ĩ°

Mu3e @ PSI

DC beam of up to $10^{10} \mu$ /s on target, triggerless DAQ.

- Scintillating fibres (<Ins) and tiles (<IOOPS) to time-slice the data
- online reconstruction using GPU farm
- vertex resolution 200 μm
- momentum resolution 0.5 MeV
 - ... in the scattering-dominated regime (E<53 MeV)
- \rightarrow HV-MAPS sensors, thinned to 50 µm; 0.1%X per layer

UK deliverables:

- outer layers of tracker
- clock and control system
- Pixel Detector Coordinator

UCL

Mu3e @ PSI

DC beam of up to $10^{10} \mu$ /s on target, triggerless DAQ.

- Scintillating fibres (<Ins) and tiles (<IOOPS) to time-slice the data
- online reconstruction using GPU farm
- vertex resolution 200 μm
- momentum resolution 0.5 MeV
 - ...in the scattering-dominated regime (E<53 MeV)
- \rightarrow HV-MAPS sensors, thinned to 50 µm; 0.1%X per layer

UK deliverables:

- outer layers of tracker
- clock and control system
- Pixel Detector Coordinator

Best limits on $\tau \rightarrow \mu\mu\mu$ and $\tau \rightarrow \mu\gamma$ from B-factories - Belle-II expect to reach 10⁻⁹ in coming decade

TauFV at CERN:

- proposed detector at SPS beam dump (parasitic to SHiP)
- could reach 10⁻¹⁰ for $\tau \rightarrow \mu\mu\mu$, possibly further for $\tau \rightarrow \mu\mu e$

New physics must be out there... but where?

 \rightarrow reach further testing loop effects with high precision measurements

Muon physics complements and extends major research themes:

- BSM searches, CPV in the lepton sector and leptogenesis of matter-antimatter asymmetry → input to European Strategy: arXiv:1812.06540

Muon g-2:

- first publication planned in 2019, running for 2 more years to reach 20x BNL stats.

- EDM and μ^{-} measurements

- options for extended / upgraded running, and follow-on measurements

CLFV with muons:

Mu2e, COMET and Mu3e aiming for 10⁴ improvement in sensitivity over current limits
 probe mass scales up to ~10⁴ TeV

- complementary physics, and complementary to g-2 & LHC

Going to be an exciting few years!