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10m(ish) Site Proposals

* We have two concrete proposals for a
site top host the 10m(ish) prototype
version, which (so far) Is the main
deliverable of the 3 year funding cycle

O. Buchmueller AION Working Meeting

« Oxford (Beecroft)
« RAL (R72)
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Work Package Breakdown (and Deliverables)

So far, we only have a high-level WP structure (see next slides) and we will
have to refine it in the coming few months. The WPs will form the skeleton
for the proposal and thus are the first items we have to define (carefully).

Along with the WPs we will have define the main deliverables of the project
for the first three (2+1) years of funding. This request MUST have the follow-
up funding for additional three years in mind. Therefore, we need to plan for
a 3+3=6 year period.

Several discussion have taken place already on scope & structure [see e.qg.
Email thread] and this now needs to be carefully crafted in WPs.

We will also have to start to think about WP leaders [IMO we should aim for
co-leadership].
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AION10 [Stage 1]: Work Packages in a Nutshell
g WP-AI
= + Form UK collaboration to design and construct AION1 and AION10 and establish a first UK
.g AION Network by building AION-1 in selected places.
= « Prototype AION-10 to demonstrate the technology and to establish UK expertise and
3 leadership in the field.
; « Commission AION-10, compare with AION-1 Network and perform synchronised
T measurement campaigns with MAGIS.
% « Connect to UK QTH to develop techniques and technology required to reach performance
g for realising science goals, in collaboration with developments in the MAGIS consortium.
WP-Physics
« Establish physics programme for AION-1/10 Network.
* Physics exploitation of AION-1/10 Network
« Contribute to work establishing the physics case for AION-100 and beyond.
«  Support phenomenology for AION physics case.
WP-AION100
« Work towards AION-100 including design work for AION-100 in a tower or a shaft and
establish the physics case.
WP-MAGIS
« Collaborate with MAGIS-100 to contribute to experiment & exploitation
5

« Build the foundation of a strong and lasting collaboration with US.
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AION10 [Stage 1]: Work Packages in a Nutshell

WP-AI

Pathway to technology and expertise and will form
a first network of Al’s in the UK.

WP-Physics

This will give us physics & phenomenology

it e et el R gl 15 AR T R

WP-AION100
This will give us the path into the future (next bid)

R i et

WP-MAGIS
This will give us MAGIS and US Collaboration
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Budget Estimate (so far)

[®)]

T Item [Year 1 to 3] [Year 4 to 6]
i Materials £2000K £3300K
S Operation £100K £100K
= R&D £1900K £800K
= Infrastructure £100K £200K
< Network £300 £500K
o Computing £100K £300K
(]

£ Total Capital £4500K £5200K
5 Table 1: Capital cost estimate for 6 years.

o}

A first estimate for all the work packages suggests that about 8 postdocs and 4
technicians/engineers will be required for the period of the project. This leads to an estimated
cost envelope of about £7.2M for RAs and technicians/engineers over the six-year funding
period. This will be complemented buy approx. £600K (£100K a year) for travel.

A first preliminary budget estimate, capital plus staff, would amount to £9.7M + £7.8M =
£17.5M. This total funding envelope is roughly equally distributed over the six-year period,
corresponding to about £2.9M per year. With this simple assumption, a 2 year + 1 year + 3
year budgeting allocation would be: £5.8M (year 1 and 2), £2.9M (year 3), £8.8M (year 4,5,
and 6). However, we would like to point out that a 2-year period for a first funding milestone is
not ideal for an experimental programme, whereas a 3-year period would allow for greater
scientific impact and achievements.
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Regular Meeting

As discussed already, we have to start regular Working
Meetings in order to prepare for the brutal timeline for the

proposal:

Suggestion:

» bi-weekly meetings
» will circulate doodle to find best slot]

» Use indico to manage agenda and vidyo, etc

> this requires that people subscribe to indico. It’s a light process and
simple. Will circulate instructions before the next meeting.
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Slides from Oxford Meeting January 17th

BACKUP
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A UK
ATOM INTERFEROMETER
OBSERVATORY AND
NETWORK

O. Buchmueller AION Working Meeting

QSFP WP3 REPORT, JANUARY 17, 2019

Oliver Buchmueller, Imperial College London
and
Jon Coleman, Liverpool University

11
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WHAT IS AION

12
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What is AION (in a nutshell)?

The proposal is to construct and operate a next generation
Atomic Interferometric Observatory and Network (AION) in the
UK that will enable the exploration of properties of dark matter as
well as searches for new fundamental interactions.

It will provide a pathway for detecting gravitational waves from
the very early universe in the, as yet mostly unexplored, mid-
frequency band, ranging from several milliHertz to a few Hertz.

The proposed project spans several science areas ranging
fundamental particle physics over astrophysics to cosmology
and, thus, connects these communities.

Following the “Big Ideas” call, the project was selected by PAAP
and STFC as a high priority for the community. It was
provisionally classified as a medium scale project.

AION is also a Work Package of the QSFP proposal

13
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The AION Project is foreseen as
a 4-stage programme:

Proposed AION Programme

The first stage develops existing technology (Laser
systems, vacuum, magnetic shielding etc.) and the
infrastructure for the 100m detector and produces
detailed plan resulting in an accurate assessment of
the expected performance in Stage 2.

The second stage builds, commissions and exploits
the 100m detector and also prepares design studies

for the km-scale.

The third and fourth stage prepare the groundwork
for the continuing programme:

» Stage 3: Terrestrial km-scale detector
» Stage 4. space based detector

ON
- LASER
HUTCH
ATOM
SOURCE
L~1mto 10m
L
ATOM
L~ 100m e
ATOM
L ~ km-scale SOURCE
L ~104km

14
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AION - A Staged Programme**

AION-10: Stage 1 [year 1 to 3]

* 1 & 10 m Interferometers & Site Development
for 100m Baseline

AION-100: Stage 2 [year 3 to 6]
= 100m Construction & Commissioning

AION-KM: Stage 3 [ > year 6 ]

= Operating AION-100 and planning for 1 km &
Beyond

AION-SPACE: Stage 4 [ after AION-KM ]
u Space based version **outlined in Big Ideas proposal 15
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AION - A Staged Programme**

AION-10: Stage 1 [year 1 to 3]

* 1 & 10 m Interferometers & Site Development
for 100m Baseline

AION-100: Stage 2 [year 3 to 6]
= 100m Construction & Commissioning

AION-KM: Stage 3 [ > year 6 ]

= Operating AION-100 and planning for 1 km &
Beyond

AION-SPACE: Stage 4 [ after AION-KM ]
u Space based version **outlined in Big Ideas proposal 16



Freise GW/ Instrumentation Saakyan Neutrinos/Dark Matter/Instrumentation Name Expertise Name Expertise
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Transfer Barontini Ultracold/Atom Interferometry Flack Quantum Gravity/QM tests
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Millen Quantum Optomechanics Margolis* Cold atom & ion clocks/ frequency Ovchinnikov* Atom Imeﬁemmew /BEC
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THE PHYSICS CASE
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AION: Pathway to the GW Nid-(FredueneBaRaIN
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Experimental GW Landscape

-12 -
EPTA
Stochastic IPTA
backgroun
-14
-16
Massive binaries
R Resolvable galactic
" binaries uco
Extreme mas! Type 1A
20 ratio inspiral supernovae
aLIGco
-22 Compact binary
inspirals
Core collapse
26 supernovae
-26
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Frequency / Hz
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AION: Pathway to the GW Mid-(Frequency) Band
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backgroun
Mid-band
decihertz to hertz
Massive binaries
LISA e LIGo
Extreme mas /
ratio inspirals f sug :
\ aLIGO
\‘con collapse
' supernovae
10 -1° 10 * 10 * 10 # 10 2 10° 10 2 10 ¢ 10 ¢

Frequency / Hz

Mid-band science

Detect sources BEFORE they reach the high frequency band [LIGO, ET]

Mid-Band currently
NOT covered

Optimal for sky localization: predict when and where events will occur (for multi-messenger
astronomy)

Search for Ultra-light dark matter in a similar frequency [i.e. mass] range

21
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Sky position determination

Sky !O_Ca“zatlon Images: R. Hurt/Caltech-JPL; 2007 Thomsoen-Higher Education
precision:

—1
Vs~ (SNR- %)

Mid-band advantages
- Small wavelength A

- Long source lifetime
(~months) maximizes
effective R
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Benchmark

GW150914
GW151226
NS-NS (140 Mpc)

Courtesy of Jason Hogan!

Ultimate sensitivity for terrestrial based detectors is achieved by operating 2 (or more)
Detectors in synchronisation mode 23




Imperial College
London

Ultimate Goal: Establish International Network
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[llustrative Example:
Network could be further extended
or arranged differently
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GW Detection & Fundamental Physics - Example

arXiv:1809.08242
John Ellis, Marek Lewicki,
José Miguel No

What is is the GW signal
of electroweak phase
transition in various
theories beyond
the Standard Model.

[®)]
=
s First-Order Electroweak Phase Transition and its Gravitational Wave Signal
g
2
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- Plots provided by Marek Lewicki :
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Translate strain into dimensionless energy
density Qg,,h? in GWs against frequency

MAGIS/AION-4K
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GW Detection & Fundamental Physics - Example
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Plots provided by Marek Lewicki
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GW Detection & Fundamental Physics - Example
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The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting
coherent effects of entire field, not single particles.
Example: Ultra-Light Dark Matter:

1022 eV 10718 eV 1071 eV 10710 v 107% eV 1072 eV

DM mass:  |r—t—————

1073 Hz 1074 Hz 1 Hz 10* Hz 10% Hz 10'? Hz

Diagram taken from P. Graham’s
talk at HEP Front 2018 28
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The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting
coherent effects of entire field, not single particles.
Example: Ultra-Light Dark Matter:

1022 eV 10718 eV 1071 eV 10710 v 107% eV 1072 eV

DM mass:  |r—t—————

1073 Hz 1074 Hz 1 Hz 10* Hz 10% Hz 10'? Hz

<— atom interferometry —>

MAGIS/AION

Diagram taken from P. Graham’s
talk at HEP Front 2018 29
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The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting
coherent effects of entire field, not single particles.
Example: Ultra-Light Dark Matter:

1022 eV 10718 eV 1071 eV 10710 v 107% eV 1072 eV

DM mass:  |r—t—————

10~® Hz 10~% Hz 1 Hz 10* Hz 10% Hz 10" Hz
<«—torsion balances —>
< E&M —m
Eot-Wash .
DM Radio

<—atom interferometry—> <€«———NMR——>

MAGIS/AION CASPEr

<« atomic magnetometers —>
Romalis and Trahms groups
Diagram taken from P. Graham’s
talk at HEP Front 2018 30
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The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting
coherent effects of entire field, not single particles.
Together with John Ellis (KCL) and Martin Bauer(IPPP, Durham) we plan a
1-day gathering in London on Feb 1
to discuss the theory and phenomenology
of Dark Matter/Sector Physics with Quantum Sensors.

Two main categories of Dark Matter that could be probed within the QSFP programme:

- Light DM (< GeV scale) which is hard to see in DD or at the LHC because
of negligible nuclear recoil or missing energy, respectively. This could be probed through
electron scattering or super-sensitive nuclear scattering experiments.
The 3.5 keV sterile neutrino would be a prime candidate for that.

- Ultralight DM (~10-14 tto 10-?2 eV) that behaves more like a classical wave
and ends up modifying fundamental constants through oscillations.
Something like an ultralight axion.

INUILLIALLD AllUl 11 Aallien BLUUPD
Diagram taken from P. Graham’s
talk at HEP Front 2018
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COLLABORATION WITH US (VIA
MAGIS)
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International Collaboration

From the outset this project would greatly benefit from close
collaboration on an international level with the US initiative, MAGIS-
100, which pursues a similar goal of an eventual km-scale atom
Interferometer on a comparable timescale.

The option of operating two Al detectors, one in the UK and one in
the US, in tandem enables new exciting physics opportunities not
accessible to either Al detector alone.

A collaboration with AION by the MAGIS experiment has already
been endorsed by the community at Fermilab, presenting the UK
with an immediate window of scientific opportunity.

This US-UK collaboration will serve as the testbed for full-scale
terrestrial (kilometre-scale) and satellite-based (thousands of
kilometres scale) detectors and build the framework for global
scientific leadership in this area.

33
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MAGIS-100: GW detector prototype at Fermilab

Matter wave Atomic Gradiometer i ——
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Interferometric Sensor

¢ 100-meter baseline atom interferometry at
Fermilab (MINOS access shaft)

¢ Intermediate step to full-scale (km) detector
for gravitational waves !

Mid-band science : . . —
e LIGO sources before they reach LIGO band Projected strain |

« Optimal for sky localization: predict when | sensitivity
and where inspiral events will occur (for
multi-messenger astronomy)

e BH, NS, WD binaries
* Probe for studying cosmology - -
» Search for dark matter (dilaton, ALP, ...) e W\

e Extreme quantum superposition states: " | - | gt o]
>meter wavepacket separation, up to 9 N
seconds duration T o '

g
LA - VO ekl cuer gl bechecdogry (ke elerence

i 14

=TT MAGHS-108 {5y

ATOW

Freguency [Hs|

Timeline B
* 2019 — 2023: MAGIS-100 at Fermilab (100-meter prototype detector) ()|
e 2023 — 2028: Kilometer-scale GW detector (e.g., SURF Homestake site) [Proposed]

100 n-leters
:

2= Fermilab ¥ LViRPOO o ol [y

SFANBGORD UNIVERSITY

Courtesy of Jason Hogan!
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MAGIS-100: GW detector prototype at Fermilab

Matter wave Atomic Gradiometer

Interferometric Sensor

¢ 100-meter baseline atom interferometry at - . _

Fermilab (MINOS access shaft) : : A
\__J/

for o Timeline:
« 2019-2023: MAGIS-100 at Fermilab (100m)

Mi‘:;: . 2023-2028: km-scale detector [site still be chosen]
) S,?Q Funding:

mu « The project was partly founded in January 2019 by the MOORE
BH. foundation with $10Mio (£7.7Mio) over 5 years.

2;0 « The project is now applying for additional DOE funding

Ext

>meter wavepacket separation, up to 9 [ 4
seconds duration T o ' o

O. Buchmueller AION Working Meeting

Freguency [Hs|

Timeline B
* 2019 - 2023: MAGIS-100 at Fermilab (100-meter prototype detector) 1) E

e 2023 — 2028: Kilometer-scale GW detector (e.g., SURF Homestake site) [Proposed]

100 mete

2= Fermilab ¥ LViRPOO o ol [y

SFANBGORD UNIVERSITY

Courtesy of Jason Hogan!

EY
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Sr gradiometer CAD
(atom source detail)

O. Buchmueller AION Working Meeting

Trapped Sr atom cloud
(Blue MOT)

Atom optics laser
(M Squared SolsTiS)

Courtesy of Jason Hogan!
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Stanford MAGIS prototype

\ 7
__ Two assembled Sr atom

Ol S T

sources
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| Stanford Lab to host 8 m
¥ prototype of the Sr fountain.

It is supposed to be assembled
over summer 2019.

| P
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VISIT TO STANFORD ON 10/11
JANUARY 2019

38
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Stanford Visit 10/11 January 2019
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We had a very fruitful visit to Stanford!
Main goals of the visit:

Establish information exchange and
review the Stanford work.

Strengthen the US-UK collaboration
|dentify synergies and common goals
between AION and MAGIS.

Outcome:

Stanford/MAGIS is very open to closer
collaboration with the UK/AION and
they very much welcome another
activity working towards the mid-band
with Als.

There are several challenges where the
UK expertise can help to achieve the
design goals of the programme [see
next slide].

We agreed to include the synchronised
operation of 10m prototype versions
(later 100m) in the programme of
MAGIS and AION. 39
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What are the challenges?

Strain [1/v/ Hz]

O. Buchmueller AION Working Meeting
3
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TOBA 2017 |
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107"°F AION/MARIS-100 with current (2019) technology -

AION/MAGIS-100 (5 to 6 year)
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AION/MAGIS-space T ]
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0.001 0.010 0.100 1 10 101
Frequency [Hz]
AION/MAGIS-100 || AION/MAGIS-100 AION/MAGIS-km
current 5/6 year
Baseline 100 m 100 m 2 km
Phase noise 1073 /v/Hz 107°/v/Hz | 0.3 x 107°/v/Hz
LMT 100 de4 4e4
Atom sources 3 3 30

Still several orders of
Magnitude away in sensitivity
required to be sensitive to Mid-
band GW physics!

Need to push the basic
parameters to accomplish this
goal! Although there is a clear

path forward this won'’t be a free
lunch and it will require effort and
ingenuity!

The UK community could play an
important role to accomplish this
goal, which, in turn, can
accelerate the schedule and
minimize the risk of failure

40
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ON
AION10 [Stage 1]: Work Packages in a Nutshell

WP-AI

 Form UK collaboration to design and construct AION1 and AION10 and establish a first UK
AION Network by building AION-1 in selected places.

* Prototype AION-10 to demonstrate the technology and to establish UK expertise and
leadership in the field.

« Commission AION-10, compare with AION-1 Network and perform synchronised
measurement campaigns with MAGIS.

« Connect to UK QTH to develop techniques and technology required to reach performance
for realising science goals, in collaboration with developments in the MAGIS consortium.

WP-Physics

« Establish physics programme for AION-1/10 Network.

* Physics exploitation of AION-1/10 Network

« Contribute to work establishing the physics case for AION-100 and beyond.

«  Support phenomenology for AION physics case.

WP-AION100

« Work towards AION-100 including design work for AION-100 in a tower or a shaft and
establish the physics case.

WP-MAGIS

« Collaborate with MAGIS-100 to contribute to experiment & exploitation

41

« Build the foundation of a strong and lasting collaboration with US.
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AION10 [Stage 1]: Work Packages in a Nutshell

WP-AI

Pathway to technology and expertise and will form
a first network of Al’s in the UK.

WP-Physics

This will give us physics & phenomenology

et e il iR U e 15 A TR I D A S

WP-AION100
This will give us the path into the future (next bid)

R i et

WP-MAGIS
This will give us MAGIS and US Collaboration

12
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Budget Estimate (so far)

Item [Year 1 to 3] [Year 4 to 6]
Materials £2000K £3300K
Operation £100K £100K

R&D £1900K £800K
Infrastructure £100K £200K
Network £300 £500K
Computing £100K £300K

Total Capital £4500K £5200K

Table 1: Capital cost estimate for 6 years.

A first estimate for all the work packages suggests that about 8 postdocs and 4
technicians/engineers will be required for the period of the project. This leads to an estimated
cost envelope of about £7.2M for RAs and technicians/engineers over the six-year funding
period. This will be complemented buy approx. £600K (£100K a year) for travel.

A first preliminary budget estimate, capital plus staff, would amount to £9.7M + £7.8M =
£17.5M. This total funding envelope is roughly equally distributed over the six-year period,
corresponding to about £2.9M per year. With this simple assumption, a 2 year + 1 year + 3
year budgeting allocation would be: £5.8M (year 1 and 2), £2.9M (year 3), £8.8M (year 4,5,
and 6). However, we would like to point out that a 2-year period for a first funding milestone is
not ideal for an experimental programme, whereas a 3-year period would allow for greater

scientific impact and achievements.
44
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Summary

The AION programme is driven by a well-defined and ambitious physics
case to explore the Mid-Frequency Band of the GW spectrum.

« In addition, it will enable the exploration of properties of dark matter as well as
searches for new fundamental interactions

AION foreseen as a staged programme: AION-10, AION-100, AION-KM and
AION-SPACE.

= AION-10 [year 1 to 3] and AION-100 [year 3 to 6] are part of the QSFP WP3

=  AION-KM and AION-SPACE are the pathway to the future and achieving
ultimate sensitivity

The AION project will closely collaborate with the US initiative, MAGIS-100,
which pursues a similar goal of an eventual km-scale atom interferometer
on a comparable timescale.

» The option of operating two detectors, one in the UK and one in the US, in
tandem enables new exciting physics opportunities not accessible to either
detector alone.

« To accomplish the ultimate sensitivity required to study the Mid-Frequency Band
of the GW spectrum, the basic parameters of the Atom Interferometer have to be
significantly improved. This requires significant effort and ingenuity, and the UK
community can play an important role in it!

The formation of an AION collaboration is well underway with the next

important milestone being the AION workshop in March 25/26
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A different kind of atom interferometer

Hybrid “clock accelerometer”
Graham et al., PRL 110, 171102 (2013).
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X X2 L
Position

0
Clock transition in candidate atom *’Sr &
é 0
=

Clock: measure light travel time => remove laser noise with single baseline

Accelerometer: atoms excellent inertial test masses
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Simple Example: Two Atomic Clocks
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Courtesy of Jason Hogan!
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Simple Example: Two Atomic Clocks

— e}
I

GW changes
light travel time

AT ~ hL/c

O. Buchmueller AION Working Meeting

Time

50

Courtesy of Jason Hogan!
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Phase Noise from the Laser

The phase of the laser is imprinted onto the atom.

Laser phase noise, mechanical platform noise, etc.

O. Buchmueller AION Working Meeting

1

7519 + 75 le) e v l9) + 5l e

Laser phase is common to both atoms — rejected in a differential measurement.

Courtesy of Jason Hogan! o1
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Clock gradiometer

2 I €) Excited state phase evolution:

o Wa

=

9) Ad ~ w4 (2L/c)

; 2L

2T+ =2 Two ways for phase to vary:

i 0w A Dark matter

¢ T+2L 0L = hL Gravitational wave
Each interferometer measures
the change overtime T
Laser noise is common-mode

0 x X2 L suppressed in the gradiometer
Position
Graham et al., PRL 110, 171102 (2013).
Courtesy of Jason Hogan! Arvanitaki et al., PRD 97, 075020 (2018). 52
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Ultralight scalar dark matter
2 ralight dilaton acts as a background field (e.g., mass ~10* e
. 1 1 d
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DM coupling causes time-varying atomic energy levels:
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Courtesy of Jason Hogan!
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LMT and Resonant Pulse Sequences
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LMT beamsplitter (N = 3)
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Graham, et al., PRL (2013)

Courtesy of Jason Hogan!

Time
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Seqguential single-photon transitions remain laser noise immune

Resonant sequence (Q = 4)

X1 X2

Position

Graham, et al., PRD (2016)
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