Simulation of the nuStorm
Detector

August 9th, 2021
CERN Summer Student Programme
Hitoshi Baba




The nuSTORM Experiment

 Primary goal:

Form a better understanding of neutrino-nucleus interactions

« Expected to reduce systematic uncertainties for neutrino oscillation experiments
—Contribute to the discovery of leptonic CP-invariance violation
« Potentially make some big discoveries about nucleus structure

e Sterile neutrino search

e Much more to come



The nuSTORM Experiment

p

l

Target
Horn
\\ 5 Dump
m < s . y
> fl (V};V Detector

Fig. 1: Schematic of the nuSTORM neutrino-beam facility.

Figure borrowed from the nuSTORM Executive Summary



Neutrino Interactions

 Many different interaction v A interaction processes including:

/ Dominant at energies <=2 GeV

« Quasi-elastic scattering v + A4 =1 + A’

« inelastic scattering v + A — | +(a bunch of hadrons)

« A lot of other processes(e.g., multi-pion resonance—production?)x Dominant at high energy’?

« elastic scattering v +4 -1 + A

— Qur detector should be capable of tracking each of the particle tracks and energies



The nuSTORM Detector

« Currently some candidates are being considered
—Sampling calorimeters vs. homogeneous calorimeters, solid vs. liquid, etc.

« For my programme, | have simulated a sampling calorimeter using Geant4d



The Codes that | have written

source/

ATTTTTTTTT

nw
53
S

ERRRRRRRR

L— vis.

—— CMakelLists.txt
——— include

stepHit.hh

stepSD. hh
trianglesActionInitialization.hh
trianglesConstants.hh
trianglesDetectorConstruction.hh
trianglesEventAction.hh
trianglesMagneticField.hh
trianglesPrimaryGeneratorAction.hh
trianglesRunAction.hh
trianglesScintHit.hh
trianglesScintSD.hh

t_vis.mac

stepHit.cc

stepSD.cc
trianglesActionInitialization.cc
trianglesDetectorConstruction.cc
trianglesEventAction.cc
trianglesMagneticField.cc
trianglesPrimaryGeneratorAction.cc
trianglesRunAction.cc
trianglesScintHit.cc
trianglesScintSD.cc

—— triangles.cc

mac

Sorry for the crappy name “triangles” :)



Detector Construction — Basic ldea

Bunch of plastic scintillator strips with triangular cross sections

16.5 mm

Cross section of a scintillator strip



Detector Construction — Basic ldea

(X—=>Y—=X—Ilron—>Y—X—Y—lron) x 210

480 scintillator strips per detector plane




Detector Construction — trianglesDetectorConstruction
class

Methods:
« Construct() —Construction of the detectors

 ConstructSDandField() —Adding the magnetic fields and sensitive detectors to the logical volumes



Detector Construction — trianglesDetectorConstruction
class

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

Placed two scintillator strips:-- Into a Rhombus
(Scintillator 1, Scintillator 2) (Rhombus)

»
»

G4PVPlacement




Detector Construction — trianglesDetectorConstruction
class

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

And the Rhombuses --- Into a Detector Plane
(Rhombus) (DetectorPlane)

»
»

G4PVReplica




Detector Construction — trianglesDetectorConstruction
class

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

Prepared six of the Detector Planes And placed them inside a module
n (Module)

Two iron plates

»
»

G4PVPlacement

__________________________________

The detector plane is a trapezoid, but the module is a box.



Detector Construction — trianglesDetectorConstruction
class

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

Finally placed the modules into a logical volume called WholeDetector using G4PVReplica
and placed the WholeDetector in the World.



Detector Construction — trianglesDetectorConstruction
class

Sensitive detectors:
Scintillatorl, Scintillator?.

Magnetic Field:

1.5 T, inside the iron plates, perpendicular to the beam line.

The trianglesDetectorConstruction class assigns the magnetic field to a logical volume.
The definition of the magnetic field is done in the trianglesMagneticField class



Detector Construction — Considerations

« It may be easier/better to use G4PVParametrization instead of the way | have constructed
the detector geometry.

— This way there would be no need to make 2 different scintillator strips

e For the material of the components, | have used G4 _Fe and
G4 PLASITC_SC _VINYLTOLUENE, from the Geant4 database/NIST Compounds. If we
want to think of other materials with specific properties, we will have to code it on our
own.

Details of the materials can be found in

https://geant4-

userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.
html

« More complex geometry?


https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

Sensitive Detectors — Hits classes and SD classes

trianglesScintHit class, trianglesScintSD class, stepHit class and stepSD class

The Hit class defines (declares) the variables to store information (e.g., energy, position, etc.)
The SD class defines when to create those hits, and what to put in those variables.

“trianglesScint” records the energy deposited to each of the scintillator strips throughout an event.
—Works as a calorimeter

“step” records energy, position, momentum, and strip No. in which the step took place.
—Works as a tracking detector



Sensitive Detectors — Calorimeter Part

trianglesScintHit class, trianglesScintSD class

« A Hit stores strip no., and energy deposited to the strip throughout the event.
A Hitis created at the beginning of the Event

« Deposited energy is added every step



Sensitive Detectors — Calorimeter Part

PlaneNo 2, StripNo 1

PlaneNo 0, Str|p/f/ o

479

Strip numbers
(directions of the actual axis might
not be correct in this picture)

PlaneNo 3, StripNo 2

T PlaneNo 1, StripNo 5



Sensitive Detectors — Tracking Detector Part

stepHit class, stepSD class

« A Hit stores strip no., energy deposited, momentum and time that the step took place in.

« A Hitis created every time a step happens in a scintillator strip.



Recording the results — Event Action and Run Action

trianglesEventAction class and trianglesRunAction class

« At the beginning of a run, the analysis files are created (Run Action)

« There the ntuple columns are created

« The ntupleis filled at the end of the Event (Event Action)

« For the calorimeter part, only the hits which had a non-zero energy deposit were recorded.

 For the tracking detector part, all the hits created were recorded.



Recording the results — The ntuple

« Each row stands for one event.

« Some columns (e.g., event no., position/momentum/energy of the primary particle) have one
variable.

« Others (e.g., strip no., position/momentum/energy deposit of each step, etc.) are expressed as a
long vector.



Some Other Components

triangles.cc

trianglesActionlnitialization

trianglesPrimaryGeneratorAction

trianglesConstants.hh

trianglesMagneticField

Main part of the application

Things related to the
initialization.
Creates the primary particle and
initializes the Event/Run actions.

Specifies the details of the
primary particle
(Particle type, energy, momentum,
etc.)

Some constants
(e.g., number of strips per plane,
number of modules)

Details (e.g., strength and direction)
of the magnetic field.



Some Other Components

vis.mac Visualization settings for running the application

Macro for initializing the
application. This macro tells the
application to initialize the kernel

and execute vis.mac

init_vis.mac

Macro for executing a run with

run_100eve.mac 100 events.

When you start running the application by typing in “./triangles” in your terminal, init_vis.mac will be
executed automatically (this is specified in triangles.cc).



How to Run — generating the executable

1. Create a build directory (outside the source directory), and cd into it.
2. Run “cmake (path to source directory)” $ cmake ../source/

3. Then run “make”

If all goes well, this should produce an executable file named “./triangles”



How to Run — running a simulation

By executing “./triangles” without specifying anything, you should be able to run the simulation in
interactive mode.

There you can create visual images, create runs with multiple events, etc.

Or, you can create a macro like “run_100eve.mac” in advance and execute the application by
specifying the macro like “./triangles run_100eve.mac”



Some Nice Pictures

globalPosY_step:globalPosX_step:globalPosZ_step globalPosY_step:globalPosX_step:globalPosZ_step {EventNo==9}

o
o

~§00

e

-5
o500 000 g

-7000

-1 {QI%OO -7500

Left: Muon track from when | shot 100 u *s with random energy/position.
Right: One of the events

This picture uses additional information that was recorded for reference, so this wouldn’t be possible when we

actually build the detector.
| didn't have time to make any physically interesting observations/analyses:--



Work that still need to be done

« Random number generator needs some adjusting (probably not that difficult)

e Support for multithreading needed
(Currently, ntuple merging is not available because of this. This means that if we do more than two
runs during a session, we will be able to get data only from the last run.)

« Memory optimization needed?

(If we try to simulate a large number of events the simulation always stops somewhere from 10 ~ 100
events.)



