
Simulation of the nuStorm
Detector

August 9th, 2021
CERN Summer Student Programme

Hitoshi Baba

The nuSTORM Experiment
• Primary goal:

Form a better understanding of neutrino-nucleus interactions

• Expected to reduce systematic uncertainties for neutrino oscillation experiments

• Potentially make some big discoveries about nucleus structure

• Sterile neutrino search

• Much more to come

→Contribute to the discovery of leptonic CP-invariance violation

The nuSTORM Experiment

1 Introduction

In 1961 the first true neutrino beam was created at CERN using the Van der Meer horn to focus pions
produced in the bombardment of a solid target by protons extracted from the PS. Such horn-focused
beams have been used at CERN, ANL, BNL, FNAL, IHEP, KEK, and J-PARC first to establish the
quark-parton model and the Standard Model and then to study neutrino oscillations and to search for
new phenomena such as the existence of sterile neutrinos.

The Deep Underground Neutrino Experiment (DUNE) [1, 2, 3, 4, 5] in the US and the Tokai-to-Hyper-
Kamiokande (Hyper-K) [6, 7, 8, 9] experiment in Japan will use horn-focused pion beams produced
using proton-beam powers in excess of 1 MW to search for the violation of CP invariance. The high-flux
beams illuminating the large DUNE and Hyper-K detectors will allow very large data sets to be accu-
mulated. Projections of the rate at which data will be collected indicate that the statistical error will be
reduced to the percent level by 2028–30. To optimise the discovery potential requires that the systematic
uncertainties be reduced to the percent level on a comparable timescale. The systematic uncertainties
are dominated by the lack of a micro-physical understanding of neutrino–nucleus interactions and, in
particular, the

(≠)
‹eA cross-sections.

The Neutrinos from Stored Muons, nuSTORM, facility is based on a low-energy muon decay ring
(see figure 1). Pions, produced in the bombardment of a target, are captured in a magnetic channel. The
magnetic channel is designed to deliver a pion beam with central momentum pfi and momentum spread
≥ ±10%pfi to the muon decay ring. The pion beam is injected into the production straight of the decay
ring. Roughly half of the pions decay as the beam passes through the production straight. At the end of
the straight, the return arc selects a muon beam of central momentum pµ < pfi and momentum spread
≥ ±16%pµ that then circulates. Undecayed pions and muons outside the momentum acceptance of the
ring are directed to a beam dump. The intense flux of muons incident on the dump may serve as a test-bed
for the development of the technologies required to deliver high-brightness muon beams [10, 11].

p

π
μ

Target
Horn

π

μ
Dump

νe, νμ
(—) (—) Detector

Fig. 1: Schematic of the nuSTORM neutrino-beam facility.

At low neutrino energy (<≥ 2 GeV),
(≠)
‹e,‹A scattering is dominated by the quasi-elastic (QE) and 1-

fi(�) processes. At higher energies, E‹
>≥ 2 GeV, poorly-known multi-pion resonance-production as well

as shallow-and deep-inelastic scattering processes play an increasingly important role. The nuSTORM
facility must be capable of delivering neutrino beams that cover this poorly known region with energies
that span from the QE-dominated regime to the kinematic regime where deep-inelastic-scattering domi-
nates (E‹

>≥ 3 GeV). To span this range requires that nuSTORM be capable of storing muon beams with
a central momentum, pµ, in the range 1 <≥ pµ

<≥ 6 GeV/c [12].
A detector placed on the axis of the production straight will receive a bright flash of muon neutrinos

from pion decay followed by a series of pulses of muon and electron neutrinos from subsequent turns of
the muon beam. Appropriate instrumentation in the decay ring and production straight will be capable
of determining the integrated neutrino flux with a precision of <≥ 1%. The flavour composition of the
neutrino beam from muon decay is known and the neutrino-energy spectrum can be calculated precisely
using the Michel parameters and the optics of the muon decay ring. The pion and muon momenta (pfi

and pµ) can be optimised to:

1

Figure borrowed from the nuSTORM Executive Summary

Neutrino Interactions
• Many different interaction νA interaction processes including:

• elastic scattering 𝜈 + 𝐴 → 𝑙 + 𝐴

• Quasi-elastic scattering 𝜈 + 𝐴 → 𝑙 + 𝐴′

• inelastic scattering 𝜈 + 𝐴 → 𝑙 +(a bunch of hadrons)

• A lot of other processes(e.g., multi-pion resonance-production?) Dominant at high energy?

Dominant at energies <= 2 GeV

→ Our detector should be capable of tracking each of the particle tracks and energies

The nuSTORM Detector
• Currently some candidates are being considered

→Sampling calorimeters vs. homogeneous calorimeters, solid vs. liquid, etc.

• For my programme, I have simulated a sampling calorimeter using Geant4

The Codes that I have written

Sorry for the crappy name “triangles” :)

Detector Construction ‒ Basic Idea

Bunch of plastic scintillator strips with triangular cross sections

16.5 mm

4.25 mm

8.5 mm
2.6 mm

Cross section of a scintillator strip

Detector Construction ‒ Basic Idea

(X→Y→X→Iron→Y→X→Y→Iron) x 210

…

…

…

Iron

…

480 scintillator strips per detector plane

Detector Construction ‒ trianglesDetectorConstruction
class

Methods:

• Construct()

• ConstructSDandField()

→Construction of the detectors

→Adding the magnetic fields and sensitive detectors to the logical volumes

Detector Construction ‒ trianglesDetectorConstruction
class

Placed two scintillator strips…
(Scintillator 1, Scintillator 2)

Into a Rhombus
(Rhombus)

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

G4PVPlacement

Detector Construction ‒ trianglesDetectorConstruction
class

And the Rhombuses …
(Rhombus)

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

G4PVReplica

Into a Detector Plane
(DetectorPlane)

Detector Construction ‒ trianglesDetectorConstruction
class

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

G4PVPlacement

Prepared six of the Detector Planes
+

Two iron plates

And placed them inside a module
(Module)

The detector plane is a trapezoid, but the module is a box.

Detector Construction ‒ trianglesDetectorConstruction
class

Hierarchy of the logical volumes (the names in parentheses are the names of the Logical Volume)

Finally placed the modules into a logical volume called WholeDetector using G4PVReplica
and placed the WholeDetector in the World.

Detector Construction ‒ trianglesDetectorConstruction
class

Sensitive detectors:
Scintillator1, Scintillator2.

Magnetic Field:
1.5 T, inside the iron plates, perpendicular to the beam line.
The trianglesDetectorConstruction class assigns the magnetic field to a logical volume.
The definition of the magnetic field is done in the trianglesMagneticField class

Detector Construction ‒ Considerations

• It may be easier/better to use G4PVParametrization instead of the way I have constructed
the detector geometry.

→ This way there would be no need to make 2 different scintillator strips

• For the material of the components, I have used G4_Fe and
G4_PLASITC_SC_VINYLTOLUENE, from the Geant4 database/NIST Compounds. If we
want to think of other materials with specific properties, we will have to code it on our
own.

Details of the materials can be found in
https://geant4-
userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.
html

• More complex geometry?

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

Sensitive Detectors ‒ Hits classes and SD classes

trianglesScintHit class, trianglesScintSD class, stepHit class and stepSD class

The Hit class defines (declares) the variables to store information (e.g., energy, position, etc.)
The SD class defines when to create those hits, and what to put in those variables.

“trianglesScint” records the energy deposited to each of the scintillator strips throughout an event.
→Works as a calorimeter

“step” records energy, position, momentum, and strip No. in which the step took place.
→Works as a tracking detector

Sensitive Detectors ‒ Calorimeter Part

trianglesScintHit class, trianglesScintSD class

• A Hit stores strip no., and energy deposited to the strip throughout the event.

• A Hit is created at the beginning of the Event

• Deposited energy is added every step

Sensitive Detectors ‒ Calorimeter Part

Strip numbers
(directions of the actual axis might

not be correct in this picture)

1 320 4 5 …

…

479

1
3

2
0

4
5

…

Iron
1 320 4 5 …

PlaneNo 1, StripNo 5

PlaneNo 2, StripNo 1

1
3

2
0

4
5

…

PlaneNo 3, StripNo 2

PlaneNo 0, StripNo 3

Sensitive Detectors ‒ Tracking Detector Part

stepHit class, stepSD class

• A Hit stores strip no., energy deposited, momentum and time that the step took place in.

• A Hit is created every time a step happens in a scintillator strip.

Recording the results ‒ Event Action and Run Action

trianglesEventAction class and trianglesRunAction class

• At the beginning of a run, the analysis files are created (Run Action)

• There the ntuple columns are created

• The ntuple is filled at the end of the Event (Event Action)

• For the calorimeter part, only the hits which had a non-zero energy deposit were recorded.

• For the tracking detector part, all the hits created were recorded.

Recording the results ‒ The ntuple

• Each row stands for one event.

• Some columns (e.g., event no., position/momentum/energy of the primary particle) have one
variable.

• Others (e.g., strip no., position/momentum/energy deposit of each step, etc.) are expressed as a
long vector.

Some Other Components
triangles.cc Main part of the application

trianglesActionInitialization
Things related to the

initialization.
Creates the primary particle and
initializes the Event/Run actions.

trianglesPrimaryGeneratorAction
Specifies the details of the

primary particle
(Particle type, energy, momentum,

etc.)

trianglesConstants.hh
Some constants

(e.g., number of strips per plane,
number of modules)

trianglesMagneticField Details (e.g., strength and direction)
of the magnetic field.

Some Other Components
vis.mac Visualization settings for running the application

init_vis.mac
Macro for initializing the

application. This macro tells the
application to initialize the kernel

and execute vis.mac

run_100eve.mac Macro for executing a run with
100 events.

When you start running the application by typing in “./triangles” in your terminal, init_vis.mac will be
executed automatically (this is specified in triangles.cc).

How to Run ‒ generating the executable

1. Create a build directory (outside the source directory), and cd into it.

2. Run “cmake (path to source directory)”

3. Then run “make”

If all goes well, this should produce an executable file named “./triangles”

How to Run ‒ running a simulation

By executing “./triangles” without specifying anything, you should be able to run the simulation in
interactive mode.

There you can create visual images, create runs with multiple events, etc.

Or, you can create a macro like “run_100eve.mac” in advance and execute the application by
specifying the macro like “./triangles run_100eve.mac”

Some Nice Pictures

7500−
7000−

6500−
6000−

5500−
5000−

globalPosZ_step

1500−
1400−

1300−
1200−

1100−
1000−

900−
800−

700−
600−

500− globalPosX_step

1100−

1050−

1000−

950−

900−

gl
ob

al
Po

sY
_s

te
p

globalPosY_step:globalPosX_step:globalPosZ_step {EventNo==9}

8000− 6000− 4000− 2000− 0 2000 4000 6000 8000
globalPos

Z_step

2000−
1500−

1000−
500−
0

500
1000globalPosX_step

2000−

1500−

1000−

500−

0
500
1000
1500

gl
ob
al
Po
sY
_s
te
p

globalPosY_step:globalPosX_step:globalPosZ_step

Left: Muon track from when I shot 100 μ+s with random energy/position.
Right: One of the events

This picture uses additional information that was recorded for reference, so this wouldnʼt be possible when we
actually build the detector.
I didnʼt have time to make any physically interesting observations/analyses…

Work that still need to be done

• Random number generator needs some adjusting (probably not that difficult)

• Support for multithreading needed
(Currently, ntuple merging is not available because of this. This means that if we do more than two
runs during a session, we will be able to get data only from the last run.)

• Memory optimization needed?
(If we try to simulate a large number of events the simulation always stops somewhere from 10 ~ 100
events.)

