Demonstrator for Cooling Design Considerations

Science & Technology Facilities Council ISIS Neutron and Muon Source

C. T. Rogers ISIS Rutherford Appleton Laboratory

NuSTORM Accelerator Challenges

- Capture of high current pion beam
 - Normal conducting transport line near target
- Containment of muon beam
 - Large momentum spread and transverse size
 - FODO-based storage ring or FFA combined function storage ring

Muon Collider Challenges

- Capture of high current pion beam
 - Superconducting transport line near target
- Muon Cooling
- Rapid acceleration and storage
 - FODO-based RCS or FFA combined function acceleration ring

Low energy vFFA PoP

Survey of Muon Beamlines

- NuSTORM would make an excellent facility
 - One of the highest current high energy muon beams
- Target/irradiation test area
- Muon beam physics tests
 - Especially Muon Cooling

PS-based option (M. Calviani)

Beam test aims

- Headlines
 - 6D cooling
 - Reacceleration
 - Cooling at low emittance (longitudinal and transverse)
- More details
 - Engineering integration
 - High-gradient RF cavity in magnetic field
 - Fancy optics
 - High field magnets
 - Absorber infrastructure
 - Matching between different cooling cells
 - Energy straggling
 - Intensity effects
 - Diagnostics
 - Alignment and correction
 - Commissioning
 - Day-to-day operation and maintenance

Muon beam test area layout

Basic layout foreseen

- Target
- Chicane first momentum selection (~200 MeV/c muons)
- Transverse collimation
- RF to set up the bucket
- Maybe another short chicane
- Cooling
- Various cooling channel options under study
 - Balance cost vs performance
 - Would like a clear signal of cooling using more-or-less conventional diagnostics → significant cooling factor

HFoFo Lattice

- HFoFo cooling channel
 - LiH wedges foreseen, but could be adapted to IH2
 - On the easier end of considered lattices
 - More like "MICE but with 6D cooling"
 - Reasonably good dynamic range in emittance

Rectilinear B8 Lattice

- Rectilinear B8 lattice
 - LiH wedges foreseen; not easily adapted to IH2 due to large opening angle
 - At the harder end of considered lattices
 - Concern about magnet engineering
 - Less dynamic range

D. Stratakis et al, Rectilinear Six-Dimensional Ionization Cooling Channel for a Muon Collider: A theoretical and numerical study, PR ST AB 18 (2015)

Expected muon rate

Paley et al, Measurement of charged pion production yields off the NuMI target, PRD vol 90, 2014

Can guess at expected muon rate

- Based on nuMI
- Use sum of weighted Gaussian, tuned by eye

Expected muon rate

- Based on PS:
 - Shortest PS bunch is ~6 ns RMS (~20 ns total)
 - 7 10¹² protons per bunch
 - Momentum selection → 6e-2 muons per proton
 - Time selection \rightarrow 3e-3 muons per proton per cooling RF bucket
 - Transverse selection \rightarrow 1e-6 muons per proton per RF bucket
 - Assume pion yield ~ beam energy → 20/120 [GeV] → 2e-7 muons per proton per RF bucket
 - Assume transport efficiency ~ 50 % → 1e-7 muons per proton per RF bucket
- Conclusion: 1e5 to 1e6 muons per RF bucket
 - Challenging for conventional diagnostics
- What is the bunch length for SPS?

Calviani et al, CERN n_TOF Facility: Performance Report,n _TOF-PUB-2010-001

Conclusions

- Cooling Demonstrator layout and initial calculations is proceeding
- Settling on options for cooling lattice parameters
- Starting to work up transport line model

