

nuSTORM at FNAL - performance of target, horn, injection and FODO ring

Ao Liu Fermilab

Outline

- Motivation and introduction (I'll not preach to the choir)
- Target and Horn
- Injection
- Ring
- Conclusions

nuSTORM is amazing

Motivation

- Electron neutrino cross section in a wide range of momentum
- Definitive statement about the existence of a lightsterile neutrino
- Accelerator test bed for a muon collider, a neutrino factory, and other muon accelerator facilities

Introduction of nuSTORM at FNAL

- nuSTORM (neutrinos from STORed Muons)
 - A technically ready-to-be-built simplest representation of a neutrino factory
 - The injection is done by stochastic injection \rightarrow no fast kickers needed
 - Requires no RF acceleration nor cooling

Introduction of nuSTORM at FNAL

 Well understood neutrino beams from a 3.8 ± 10% GeV/c muon storage ring

$$\mu^{+} \Rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu} \qquad \mu^{-} \Rightarrow e^{-} + \nu_{\mu} + \bar{\nu}_{e}$$

$$\mu^{-} \Rightarrow e^{-} + \nu_{\mu} + \bar{\nu}_{\mu} + \bar{\nu}_{e}$$

$$\mu^{-} \Rightarrow e^{-} + \nu_{\mu} + \bar{\nu}_{e}$$

$$\mu^{-} \Rightarrow e^{-} + \nu_{\mu} + \bar{\nu}_{e}$$

$$\mu^{$$

Target and Horn

- Inconel target outperforms other materials
 - Choice of target length presented in later slides
- Horn provides powerful focusing for a target inside the horn
 - Optimization of horn presented in later slides

Design sequence

- Design of the nuSTORM facility is unique in many senses
 - Optics of the decay straight section of the FODO ring is determined first, then the injection, horn and target are optimized based on the injection performance
- Multiple design tools used in this design procedure
 - MAD-X as the linear optics and PTC tracking tool
 - G4beamline to track secondaries and generate neutrino flux
 - MARS15 to simulate the target bombarded by the proton beam
- Starts from pion-beamline (pion transport line, the orbit combination section (OCS), the production straight)

Pion beamline – decay straight FODO cell

3. (m), β. (m)

In order to realize stochastic injection, FODO cells have to accept two beams at different momenta

 Not a traditional design like in g-2 where pion and muon beams are at same P

Pion beamline – Orbit Combination Section (OCS)

- OCS brings the reference orbits of pions and muons together after injection
- Requires large aperture magnets (D and B)

Optics of pions and muons to OCS

- Twiss at the injection point needed to continue optic design in the pion transport line
- Dispersion is the key parameter to allow enough separation at the injection point
 - Trade-off: beam size grows with dispersion so beta functions have to be small. Dispersion to follow has to be reduced quickly.
 Fermilab

Pion beamline optics

 β_x (*m*), β_y (*m*)

From the OCS, Twiss are matched to the pion optics at the $\widetilde{\mathfrak{z}}$ downstream face of the baseline collection horn

In this figure, pions move from left to right

At the downstream face of the horn (left) the dispersion should be 0

The 2nd dipole was added to ensure target station is not too close to the decay ring

Muons at the end of decay straight after injection

13

2/16/17

200

300

Horn Optimization using the Genetic Algorithm

Pion beamline optics redesigned, tracking redone to reflect new optics; μ + in both 2000 μ m and 3.8±10% GeV/c increased by 8.3%

Pion beamline optics

🛟 Fermilab

 $N_{\mu,P}$ and $N_{\pi,\epsilon}$ increased by ~20%; (If just changing the target length: ~5%) μ + in both 2000 μ m and 3.8±10% GeV/c increased by ~16% (Compared to the pre-optimization 38 cm Inconel + baseline horn)

FODO ring design

- nuSTORM decay ring has many challenges
 - Large transverse beam admittance, 2000 μm rad (UNNORMALIZED),
 - Large momentum spread, δ within ± 0.1
 - Length of the arcs limited, few available spaces for sextupoles
- Use combined function dipole in the arcs
 - Smaller natural chromaticity (-4.11, -6.62), 60% transmission for 100 turns
 - Allow dispersion to propagate from OCS into arcs and design periodic dispersion in the arc cells, suppress beta function to limit beam size
 - Large aperture combined function magnets need R&D (superconducting)
- DBA cells designed as a comparison: harder to implement sextupole corrections and lower acceptance

16 2/16/17 Ao Liu

FODO ring and sextupole correction

- Where to put sextupole / sextupolar field
 - Drift space in the arcs (dispersive) but space is limited by the length ratio of arcs v.s. straight;
 - Sextupolar field in combined function dipoles but strength is limited by the pole tip field allowance
 - Above are all the dispersive locations
- How to set strength of sextupoles
 - The sextupoles will correct not only chromaticity but also higher order terms such as geometric abberations, 2nd order dispersion and so forth
 - Beam is large and has large momentum spread: many orders of nonlinearities
 - Use the Simulated Annealing (SA) and MAD-X PTC tracking to directly optimize acceptance

FODO ring and sextupole correction

FMA (performed by elegant)

Low tune shifts with amplitude before sextupole correction;

With sextupoles, SA corrects mainly:

- 1. Second order chromaticity $d^2 v_{x,y} / d\delta^2$: -3.62 to 0.41, -10.7 to -3.79
- 2. Second order dispersion: D_2 : 21.2 to 1.57

Acceptance increases from 58% to 67%

FODO ring and sextupole correction

FMA (performed by *elegant*)

Low tune shifts with amplitude before sextupole correction;

With sextupoles, SA corrects mainly:

- 1. Second order chromaticity $d^2 v_{x,y} / d\delta^2$: -3.62 to 0.41, -10.7 to -3.79
- 2. Second order dispersion: D_2 : 21.2 to 1.57

Acceptance increases from 58% to 67%

Neutrino flux at nuSTORM

Conclusions

- Designs for the nuSTORM target, horn, pion beamline and FODO ring have been done
- Performance of the design can be used as a benchmark for the future optimizations
- nuSTORM @ FNAL facility design experience can be readily applied to nuSTORM @ CERN
- Looking forward to continuation of interest in and development of nuSTORM