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How much precision?

1st oscillation maximum
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For baselines below
1500 km, the gen-
uine CP asymmetry
is at most ±25%

For 75% of the
parameter space in
δ, the genuine CP
asymmetry is as
small as ±5%

That is, a 3σ evidence for CP violation in 75% of
parameter space requires a ∼ 1.5% measurement of

the P − P̄ difference, and thus a 1% systematic error.
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The Idea
In order to measure CP violation we need to
reconstruct one out of these

P (νµ → νe) orP (νe → νµ)

and one out of these

P (ν̄µ → ν̄e) orP (ν̄e → ν̄µ)

and we’d like to do that at the percent level accuracy
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The Reality

We do not measure probabilities, but event rates!

Rα
β(Evis) = N

∫
dE Φα(E) σβ(E,Evis) ǫβ(E)P (να → νβ, E)

In order the reconstruct P , we have to know

• N – overall normalization (fiducial mass)

• Φα – flux of να
• σβ – x-section for νβ
• ǫβ – detection efficiency for νβ

Note: σβǫβ always appears in that combination, hence
we can define an effective cross section σ̃β := σβǫβ

P. Huber – p. 4



The Problem
Even if we ignore all energy dependencies of
efficiencies, x-sections etc., we generally can not
expect to know any φ or any σ̃. Also, we won’t know
any kind of ratio

Φα

Φᾱ

or
Φα

Φβ

nor
σ̃α
σ̃ᾱ

or
σ̃α
σ̃β

Note: Even if we may be able to know σe/σµ from
theory, we won’t know the corresponding ratio of
efficiencies ǫe/ǫµ
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νe/νµ total x-sections
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Appearance experiments
using a (nearly) flavor
pure beam can not rely
on a near detector to pre-
dict the signal at the far
site!

Large θ13 most difficult
region.

Differences between νe and νµ are significant below
1 GeV, see e.g. Day, McFarland, 2012
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Neutrino cross sections
Our detectors are made of nuclei and compared to a
free nucleon, the following differences arise

• Initial state momentum distribution

• Nuclear excitations

• Reaction products have to leave the nucleus

• Higher order interactions appear

As a function of Q2 these effects are flavor blind, but
we do NOT measure Q2.

These effects are NOT the same for neutrinos and
antineutrinos.
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Theory and cross sections

Theory is cheap, but multi-nucleon systems and their
dynamic response are a hard problem. Currently, there
are two major approaches

Greens function Monte Carlo: numerically “exact”
solutions for light nuclei (A≤12) and non-relativistic
kinematics.

Spectral functions: use information on the initial state
from electron-scattering data.

Both techniques are not controlled approximations
and thus to trust theory at x% we have to
experimentally test the theory at x% – ultimately,
precision cross section measurements are
unavoidable.
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Quasi-elastic scattering

QE events allow for a simple neutrino energy
reconstruction based on the lepton momentum.

Nuclear effects will make some non-QE events appear
to be like QE events ⇒ the neutrino energy will not be
correctly reconstructed.
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(a) Expected events at the far detector
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(b) Expected events at the near detector

Coloma et al. 2013
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Impact on oscillation

νµ → νµ in a T2K-like setup with near detector.
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Coloma et al. 2013

If the energy scale is permitted to shift, tension and

bias are reduced, but effects very hard to spot from χ2
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Missing energy

Wide Band, L=1300 km
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Ankowski et al., 2015

In elastic scattering
a certain number of
neutrons is made

Neutrons will be
largely invisible even
in a liquid argon TPC

⇒ missing energy

We can correct for the missing energy IF we know the
mean neutron number and energy made in the
event. . .
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Towards precise cross sections

This will require better neutrino sources, since a cross
section measurement is about as precise as the
accuracy at which the beam flux is known.

• Sub-percent beam flux normalization

• Very high statistics needed to map phase space

• Neutrinos and antineutrinos

• νµ and νe

The only source which can deliver all that is a muon
storage ring, aka nuSTORM.

NONE of the other solutions has been shown to be
able deliver sufficient improvements in systematics!
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nuSTORM in numbers
Beam flux known to better than 1%

µ
+

µ
−

Channel Nevts Channel Nevts

ν̄µ NC 1,174,710 ν̄e NC 1,002,240

νe NC 1,817,810 νµ NC 2,074,930

ν̄µ CC 3,030,510 ν̄e CC 2,519,840

νe CC 5,188,050 νµ CC 6,060,580

π
+

π
−

νµ NC 14,384,192 ν̄µ NC 6,986,343

νµ CC 41,053,300 ν̄µ CC 19,939,704

nuSTORM collab. 2013

Approximately 3-5 years running for each polarity
with a 100 t near detector at 50 m from the storage ring
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Systematics for Superbeams

figure courtesy M. Bass, 2014

Systematics at the 1% level
is necessary for a successful
future LBL program

The range of 1 − 5% sys-
tematics corresponds to
an exposure difference of
about 200-300% in a very
non-linear fashion

Given the $1-2B scale of LBL
experiments, investing in pre-
cise cross section measure-
ments provides a very good
return on investment! P. Huber – p. 14
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