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How much precision?

For baselines below
- 1500 km, the gen-
P;Fincluding matter effects uine CP asymmetry
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1st oscillation maximum
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That 18, a 30 evidence for CP violation in 75% of
parameter space requires a ~ 1.5% measurement of

the P — P difference, and thus a 1% systematic error.
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The Idea

In order to measure CP violation we need to
reconstruct one out of these

P(v, = v.)or P(v. — v,)

and one out of these

P(v, — v.)or P(V, — U,

and we’d like to do that at the percent level accuracy
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The Reality

We do not measure probabilities, but event rates!

R(Eys) = N / dE ®.(E) 04(E, Eyis) €3(E) P(vq — v, E)

In order the reconstruct P, we have to know
e /N — overall normalization (fiducial mass)
e &, —flux of v,
* o3 — X-section for vg
* eg — detection etficiency for v

Note: o€ always appears 1n that combination, hence
we can define an effective cross section og := ogeg
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The Problem

Even 1f we 1gnore all energy dependencies of
efficiencies, x-sections efc., we generally can not
expect to know any ¢ or any o. Also, we won’t know
any kind of ratio

o, o,

(I)@ (I)ﬁ
nor

O 0%

—— Oor —

OH o

Note: Even if we may be able to know o /o, from
theory, we won’t know the corresponding ratio of
efficiencies €. /¢,
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e/, total x-sections

T2HK CPV at 3c

Appearance experiments
using a (nearly) flavor
pure beam can rely
on a near detector to pre-
dict the signal at the far
site!

Large 613 most difficult
region.

PH, Mezzetto, Schwetz, 2007
Differences between v, and v, are significant below

1 GeV, see e.g. Day, McFarland, 2012
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Neutrino cross sections

Our detectors are made of nuclei and compared to a
free nucleon, the following differences arise

* Initial state momentum distribution
* Nuclear excitations

» Reaction products have to leave the nucleus
« Higher order interactions appear

As a function of ()? these effects are flavor blind, but
we do NOT measure Q)°.

These effects are NOT the same for neutrinos and
antineutrinos.
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Theory and cross sections

Theory 1s cheap, but multi-nucleon systems and their
dynamic response are a hard problem. Currently, there
are two major approaches

Greens function Monte Carlo: numerically “exact”
solutions for light nuclei (A<12) and non-relativistic
kinematics.

Spectral functions: use information on the 1nitial state
from electron-scattering data.

Both techniques are not controlled approximations
and thus to trust theory at x% we have to
experimentally test the theory at X% — ultimately,
precision Cross section measurements are
unavoidable.
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Quasi-elastic scattering

QE events allow for a simple neutrino energy
reconstruction based on the lepton momentum.

Nuclear effects will make some non-QE events appear
to be like QE events = the neutrino energy will not be
correctly reconstructed.
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(a) Expected events at the far detector (b) Expected events at the near detector

Coloma er al. 2013
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Impact on oscillation
v, — v, 1n a T2K-like setup with near detector.

5% cal. error

x2./dof = 20.95/16

Xoio/dof = 47.64/16

38 40 42 44 46 48 50 52 38 40 42 44 46 48 50 52
023[°] 023[°]

(a) No calibration error (b) 5% calibration error

Coloma et al. 2013
It the energy scale 1s permitted to shift, tension and

bias are reduced, but effects very hard to spot from >
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Missing energy

Yo In elastic scattering
Perfect fec, Cal a certain number of

=eee 80% Epnigs  x°/dof=0.4/52

—— 50% Epjss  x%/dof=2.6/52 neutrons iS mace

smemes 20% Epmiss x2/dof=7.5/52

Neutrons will Dbe
largely 1nvisible even
10 contours (2 d.o.f.) in a liquid argon TPC

Wide Band, L=1300 km

= missing energy

Ankowski er al., 2015
We can correct for the missing energy | we know the

mean neutron number and energy made in the
event. . .
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Towards precise cross sections

This will require better neutrino sources, since a Cross
section measurement 1s about as precise as the
accuracy at which the beam flux 1s known.

e Sub-percent beam flux normalization

e Very high statistics needed to map phase space
e Neutrinos and antineutrinos

* v, and v,

The only source which can deliver all that 1s a muon
storage ring, aka nuSTORM.

NONE of the other solutions has been shown to be
able deliver sufficient improvements 1n systematics!
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nuSTORM in numbers

Beam flux known to better than 1%

¥ e

7!
Channel Neavts Channel
1,174,710 1,002,240
1,817,810 2,074,930
3,030,510 2,519,840

5,188,050 6,060,580
+ —

total CC

CC events

Ve

m T

14,384,192 6,986,343
41,053,300 19,939,704

nuSTORM collab. 2013
Approximately 3-5 years running for each polarity
with a 100 t near detector at 50 m from the storage ring
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Systematics for Superbeams

CP Violation Sensitivity
75% 6cp Coverage

80 GeV Beam
Signal/background
uncertainty varied

0 200 400 600 800 1000
Exposure (kt.MW.years)

Systematics at the 1% level
1s necessary for a successful
future LBL program

The range of 1 — 5% sys-
tematics  corresponds  to
an exposure difference of

about 200-300% 1n a very
non-linear fashion

Given the $1-2B scale of LBL
experiments, investing in pre-
CIis€ Cross section measure-
ments provides a very good
return on investment! ... . .



	How much precision?
	The Idea
	The Reality
	The Problem
	$mathbf {
u _e}/mathbf {
u _mu }$ total x-sections
	Neutrino cross sections
	Theory and cross sections
	Quasi-elastic scattering
	Impact on oscillation
	Missing energy
	Towards precise cross sections
	nuSTORM in numbers
	Systematics for Superbeams

