

Cambridge LHCb Group Mind Map 2023

RECONSTRUCTION

All numbers are ±20%

All numbers are ±20%

LHCb Run3

LHCb Upgrade

run 1 has been a great success for the LHC, LHCb, ... and the Standard Model

- but current measurement precision in the flavour sector still allows significant contributions from New Physics
- precision of most LHCb results will still be limited by statistics after run 2
 - leading systematic uncertainties will often decrease with available statistics
- after run 2 would need > 10 years with current LHCb to double precision again

LHCb upgrade after run 2 increase annual event yields by - increasing instantaneous luminosity - increasing trigger efficiencies

2010		0.037 fb ⁻¹ @ 7 TeV
2011	run 1	1 fb ⁻¹ @ 7 TeV
2012		2 fb ⁻¹ @ 8 TeV
2013	LS 1	minor maintenance
2014		work
2015		
2016	run 2	5 fb ⁻¹ @ 13 TeV
2017		
2018	LS 2	
2019		
2020	run 3	15 fb ⁻¹ @ 14 TeV
2021		
2022		
2023		
2024	LS 3	?
2025		
2026++	run 4	5 fb ⁻¹ / year @ 14 TeV

15 Aug 2014

HC

LHC and Beyond – LHCb upgrade (11/28)

O. Steinkamp

LHCb Calendar

Fig. 1. The LHCb trigger schemes for Run I (left) and Upgrade (right).

Upgrade 1 (Current)

2022 Data RICH Performance

https://lbfence.cern.ch/alcm/public/figure/details/620

- Better performance in Run3, even though occupancies are higher
 - Run2 <#PVs> ~= 1.8
 - Run3 <#PVs> ~= 3.0

2023 Data RICH Performance

https://lbfence.cern.ch/alcm/public/figure/details/620

- Better performance in 2023
 - In part due to data taking conditions.
 Open Vertex Locator, slightly lower luminosity.
 - But also improved detector calibration and alignment.

So What Next ? Upgrade II ...

Novel feature of the LHCb detector: fast timing

A new dimension will be added to the LHCb experiment.

Timing information with a **few tens of ps resolution** per particle will allow charged tracks and photons to be associated to the correct interaction vertex.

x yz yz yz y

VELO, RICH, ECAL and TORCH will be fast timing detectors.

- > Adds a new dimension to the **information exchange** between sub-detectors.
- > Could all contribute to the same estimate of the track time as it passes the detector.
- > Opens up **new avenues for data suppression** in front-end hardware and in software trigger.
- Sets challenging R&D requirements particularly for sensor technologies and front-end ASICs.

07.07.21

LHCb - Floris Keizer

Fast timing in the RICH detectors

Owing to the prompt Cherenkov radiation and focusing mirror geometry, all photons from a given track arrive at approximately the same time at the photon detector plane.

- Using reconstructed parameters in the RICH algorithms and the PV t-zero, can predict the detector hit times to within 10 ps.
- Time gate around the predicted time significantly reduces combinatorial background and helps to recover the Run 3 particle ID performance.
- > Faster detectors are better, as in practice the photon detector resolution will dominate the width of the time gate. Aiming for a resolution better than 100 ps.

×10³ Doi:10.17863/CAM.45822 10 RICH1 RICH2 8 Events 0 _10 -5 0 Δt (Hit-Predicted) time [ps] Photodetector hit Plane mirror Spherical M2 mirror **RICH entry**

10

A RICH Christmas Carol!

Dan Foulds-Holt

RICH throughout the years

The RICH of Christmas past

The RICH used Hybrid Photon Detectors and individual readout boards bonded to each detector.

This did not grant any timing information.

The RICH of Christmas present

The current RICH has shifted to using MaPMTs. Readout is through a CLARO chip and an FPGA.

This applies a 6.23 ns front end timing gate, but no additional time information...

The RICH of Christmas future

The future RICH will likely need **new photodetectors** along with the **FastRICH** chip giving an improved readout board with time resolution.

LAPPD / MCP SiPM Sensor **Optical link** DC Back-end DC LHC Run 4 FastRICH MAPMT PCIe40(0) Optical link Back-end Sensor DC DC HL-LHC Run 5 FastRICH SIPM / MAPMT / MCP PCIe40(0)

Testbeams!

Testbeam campaigns are needed to rigorously test the detectors and readout electronics!

In 2022, testbeams were carried out using the FastIC chip and a TDC with 150ps resolution.

The 2022 Testbeam

The testbeam was able to take lots of Cherenkov data while testing the photodetectors and readout electronics.

The 2022 Testbeam

The testbeam was able to take lots of Cherenkov data while testing the photodetectors and readout electronics.

The 2022 Testbeam

Best performance from the testbeam returns a time resolution of **176ps**. This is approaching the MaPMT detector resolution!

We have successfully reached the timing limit of what the MaPMT can achieve but for the faster detectors we need improved electronics.

FastRICH

The FastRICH simplifies the readout chain and provides timing measurement with ~25 ps bins.

a ow

RICH schedule

Extensive work is being done to prepare for the upcoming upgrades in both **readout electronics** and **photodetectors**. Ensuring the RICH will continue to provide PID after the jump in luminosity and beyond.

The LHCb Mighty Tracker project

Christmas meeting

Tianqi Gao

From my 2023 underground tour

The LHCb Mighty Tracker project

- 20m long LHCb detector
- Mighty-tracker is placed inside of the SciFi-tracker
- SciFi doesn't have vertical information, MT adds it

The LHCb Mighty Tracker project

- There, the full LHCb detector
- η is from 2 to 5 and from -2 to -5

Monolithic Active Pixel Sensor (MAPS)/HV-CMOS

- Industry-standard CMOS processes -> mass fabricate -> cheaper
- We ask them to make a CPU using an old 180 nm process, then stop them right after photolithography but before they thin out the "useless" p-substrate
- Each pixel is placed vertically along the sensor, each sensor is placed horizontally on a module
- 37k pixels per sensor, 140 sensors per module

- We ask them to make a CPU using an old 180 nm process, then stop them right after photolithography but before they thin out the "useless" p-substrate
- Each pixel is placed vertically along the sensor, each sensor is placed horizontally on a module

Monolithic Active Pixel Sensor (MAPS)/HV-CMOS

- The mighty tracker is \sim 4.4 x 1 m², each module is \sim 20 x 52.8 cm²
- 37k pixels per sensor, 140 sensors per module
- 14 modules per layer, 6 layers
- totalling 11760 sensors or 435 million pixels, a 4k TV has 8.3 million pixels

Mechanics and integration

Mechanics and integration

Besides, you^rre saying it wrong It's *Leviosa*, not *Leviosar*.

Cambridge's involvement

10

Timeline

Rare Decays at LHCb

1

Why Rare Beauty Decays?

Standard Model

New Physics

 $o b \rightarrow s\ell^+\ell^-$ and $b\bar{s} \rightarrow \ell^+\ell^-$ transitions, are **flavour-changing neutral current** (FCNC) processes → forbidden at tree level in the Standard Model (SM)

 \circ supressed in SM (branching fractions $\mathcal{O}(10^{-10}) - \mathcal{O}(10^{-6})$) and sensitive to New Physics (NP)

 particles associated with NP quantum fields can have masses above reach of direct searches at LHC

Anomalies

6

Lakshan Mahdan

-

Analysis of $B^+ \to K^+ \mu^+ \mu^-$

- The dimuon spectrum of b->sll transition contain both local and non-local (hadronic) contributions
- Underestimated hadronic effect could potentially explain the anomalies seen
- Analysis aims to measure the local SM and NP while accounting for the hadronic effects directly using data in the full dimuon spectrum.
- Sensitive to NP enhanced tau-loop effects to dimuon spectrum

Analysis in Review within LHCb

Davide Lancierini

LFU measurements at LHCb: R_K

• $R_{H_s \equiv K}$ measurements compare the branching ratios of $B^+ \to K^+ \ell \ell$ decay to e and μ final states

- Challenging as it requires precise knowledge of the signal yield (N) and the selection efficiency
 (ε) of decays that exploit different sub-detection systems at LHCb
 - 。 Different reconstruction efficiencies, resolution, backgrounds btw e and μ
- We're involved in the measurement of R_K in kinematic region where the dilepton pair carries away most of the B^+ momentum, where existing measurements have big uncertainties (~ 18%)

R_K at high dilepton invariant mass q^2

- We extract the signal yield (N) via unbinned maximum likelihood fits to the B^+ mass shape.
- In this kinematic region, lower efficiency and resolution in the electron mode induce a warping of the combinatorial background shape (strong contrast with muons).
- For combinatorial background events, the B^+ mass cannot be arbitrary low and q^2 arbitrary high $\rightarrow B^+$ mass shape warping due to phase-space.
- We developed a "physically" inspired model to describe this phase-space cut at low B^+ mass:
 - Allows to minimise the number of parameters needed to describe the combinatorial shape and maximise the sensitivity to R_K at high q^2 (est. ~ 8% tot uncert.)

Richard Willi

Search for $B^+ \rightarrow \pi^+ e^+ e^-$

Close to final selection in our search for the as yet unobserved decay, splitting our signal region to help model backgrounds, with 2.2σ expected sensitivity.

Thomas Long

B Decays to Multiple Muons

Motivation

• Enhanced *B* decays to multiple muons arise naturally in non-minimal composite Higgs models, with flavourviolating heavy vectors (*V*) and light resonances (*a*) [arXiv:1902.10156, arXiv:2206.01759].

 B_0^s

• Depending on the invariant mass of these light resonances, decays of the form B_s $\rightarrow a_1 a_2$ and B^+ $\rightarrow K^+ a_1 a_2$ could give rise to 4μ or 6μ .

•Aim: Measure (or set limits on) BFs for $B_s \rightarrow 4\mu/6\mu$ and $B^+ \rightarrow K^+ 4\mu/K^+ 6\mu$ (both prompt and long-lived *a*) relative to $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(\mu^+\mu^-)$ as the normalization mode using Run 2 data.

Progress

- Simulation corrections mainly complete.
- Signal selection and efficiency calculation framework established complete selection yet to be finalised.
- Yield of normalisation mode $B_s^0 \rightarrow J$ $/\psi(\mu^+\mu^-)\phi(\mu^+\mu^-)$ determined from fit to the invariant mass distribution.
- Systematic uncertainties and potential exclusive background sources in signal window to be studied.
- Prepare fitting strategy for signal modes and calculate expected upper limits.

A search for the rare decay $\Lambda_{h}^{0} \rightarrow pK^{-}\tau^{+}\tau^{-}$ at LHCb

- Motivation? •
 - Rare loop level process, sensitive to new physics entering at tree level.

- Models explaining $R(D) R(D^*)$ anomalies predict enhanced $b \rightarrow s\tau\tau$ branching fractions (expected even for LFU in light lepton generations). [1]
- Progress highlight?
 - Work on selection, for which central feature is BDT to discriminate against combinatorial, prompt, and semileptonic background classes.
 - Lack of tau vertex requires many backgrounds to be considered. Most important backgrounds are semileptonic, e.g. the background in the bottom right-hand plot: Λ_b^0 $\rightarrow D^0 p \ell^- \overline{\nu_\ell}, D^0 \rightarrow K^- \mu^+ \nu_\mu^-$

[1] J. Aebischer, G. Isidori, M. Pesut, B. A. Stefanek and F. Wilsch, Eur. Phys. J. C 83 (2023) no.2, 153

 A_{CP} in $B^+ \rightarrow K^+ \mu^+ \mu^-$

New physics can induce differences between the CP asymmetries in electronic and muonic decays. Updated measurement of A_{CP} in $B^+ \rightarrow K^+ \mu^+ \mu^-$ decays a first step.

CP violation

No matter how charming

HEP Extravaganza 2023

Jordy Butter 06/12/2023

Overview of activities

- Charmless $B \rightarrow VV$ analyses:
 - $\circ \quad B^0_{(s)} \to K^{*0} \overline{K}^{*0}$
 - $\circ \quad B^0 \to \rho^0 K^{*0}$
 - $\circ \quad B^0_{(s)} \to \phi K^{*0}$
 - $\circ \quad B^+ \to \rho^0 K^{*+}$
- Measuring CKM-angle γ :
 - $\circ \quad B^0_s \to D^\mp_s K^\pm$
 - Gammacombo

Decay topologies of non-leptonic beauty decays

CP violation

- *CP* violation reveals itself in the interference of two decay amplitudes
 - Must be a weak and strong phase difference
- Sometimes, neutral meson mixing necessary: interference in mixing and decay
 - Decay-time dependent analysis required
 - Situation for $B^0_{(s)} \to K^{*0}\overline{K^{*0}}$ decays actually a bit more complex due to loop

Other parameters of interest

- Time-integrated *CP* violation in $B^0 \rightarrow \rho^0 K^{*0}$
- Branching fractions
- Fractions of angular contributions

 $f_{L,\parallel,\perp} = \frac{|A_{0,\parallel,\perp}|^2}{|A_0|^2 + |A_\parallel|^2 + |A_\perp|^2}$

- Tensions between theory and experiment
- Easier to compare the ratio:

$$L_{K^*\overline{K}^*} = G \frac{\mathcal{B}(B^0_s \to K^{*0}\overline{K}^{*0})}{\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0})} \frac{f_L^{B^0_s \to K^{*0}\overline{K}^{*0}}}{f_L^{B^0 \to K^{*0}\overline{K}^{*0}}}$$

B⁰→K^{*0}R^{*}

B⁰-+K⁺⁰

 $= B^0 \rightarrow K^{*0}\rho$ $= B^0 \rightarrow K^{*0}\rho$

5600

Data

 χ^2 /ndof = 297.75/84 = 3.54

Branching fraction of $B_{(s)}^0 \to K^{*0}\overline{K^{*0}}$ decays

- Almost there for branching fraction measurement
- Simultaneous fit to signal and misID backgrounds
 e.g. m(KPiPi), m(KKKPi), m(KPiPiPi)
- Normalisation channels: $B^0 \rightarrow D^- \pi^+$ and $B^0_s \rightarrow D^-_s \pi^+_{\overline{a}}$
- Train Combinatorial and PID BDTs
- Amplitude analysis and time-dependent
 - measurement will follow

12000 W

∽ 10000

8000

6000 F

4000

2000

5200 5250

Normalisation channels

Signal

Run 1 and Run 2 data

Study of $B^0 \rightarrow \rho^0 K^{*0}$ decays

- Also involves amplitude analysis of $B^0 \to (\pi^+\pi^-)(K^+\pi^-)$
 - Including various resonances 0
- *CP* violation due to penguin-tree interference
 - Similar decay signature as
 - Combinatorial BDT in place
 - **Observe** $B_s^0 \rightarrow \rho^0 K^{*0}$?

Preliminary mass fit with loose BDT cut

Leading Feynman diagrams

 B^0

B2VV acceptance studies

- Model the 5D acceptance of $m(K^{*0}), m(\overline{K^{*0}}), \cos(\theta_1), \cos(\theta_2), \phi$
- Model using Legendre Polynomials
- Verified using a BDT method
- Method can be used across
 B2VV analyses

Results for $\cos(\theta_1)$ vs $\cos(\theta_2)$

B2VV angular fitter

- Work in progress
- Angular fit to the vars: $m(V_1), m(V_2), \cos(\theta_1), \cos(\theta_2), \phi$
- Depending on the decay, many amplitudes and interferences can contribute

14 amplitudes in $B^0 \rightarrow \rho^0 K^{*0}$

Determination of γ

- **CKM Fitter:** $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$
- LHCb Combination:

 $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$

• New: Run 2 measurement $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

Thanks for your attention!

Tianqi

Jordy

LHCb

Davide

Matthew

Francesca

Callum

a, b, c and d well known

