
Entanglement and Islands in de Sitter 
JT Gravity

Lars Aalsma

Quantum de Sitter Universe Workshop 
April 21, 2023

Arizona State University
Work with:

W. Sybesma 
W. Sybesma + S. Aguilar-Gutierrez



Layout

• Motivation 

• Symmetries of the Cosmological Horizon 

• JT Gravity + Matter 

• Entanglement and Islands 

• Outlook

2



Motivation
At this workshop, we’ve heard a lot about the different approaches to 
de Sitter quantum gravity. 

Most approaches have in common that they look for signatures/
interpretations/implications of the finite de Sitter entropy. 

This makes sense, because  is a truly quantum gravity effect:SdS

GN → 0 ⇒ SdS → ∞

Probing  is a window into de Sitter quantum gravity.SdS
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Allowing for (small) fluctuations of the background should introduce 
finite entropy corrections.



Motivation

4

One way of probing  is through entanglement entropy.SdS

This approach as been fruitful for black holes.

This led to the “discovery” of entanglement islands and replica 
wormholes.

Today: to what extent can these results be applied to the de Sitter 
horizon?
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Central Dogma’s
First, we need to understand what the entropy is supposed to be 
counting.

For black holes this is formulated in the “central dogma”: [Almheiri, Hartman, 
Maldacena, Shaghoulian, Tajdini ’20]
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Central Dogma’s
First, we need to understand what the entropy is supposed to be 
counting.

For black holes this is formulated in the “central dogma”: [Almheiri, Hartman, 
Maldacena, Shaghoulian, Tajdini ’20]

Interior of black hole described by:

dim(ℋ) ∼ eSBH

Significant evidence!
6
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However, empty de Sitter space has maximum entropy.
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Central Dogma’s

7

This has been extended to de Sitter space: [Shaghoulian ’21]

Implies the Hilbert space contains “everything”.

However, empty de Sitter space has maximum entropy.

Static patch (+fluctuations) 
described by:

dim(ℋ) ∼ eSdS

+ + …

Described by type  von Neumann algebraII1
[Chandrasekaran, Longo, Pennington, Witten ’22] Compelling evidence



Role of the Observer
To define the quantum system the entropy is supposed to be counting, 
we need to introduce a (pair of) observers.
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Timeslice of Static PatchGlobal de Sitter

r =
ℓ

The observer spontaneously breaks the isometry group of de Sitter: 

SO(d,1) → SO(d − 1) × R

8

Other isometries “mix” static patches.



Symmetries of dS QG

9

This symmetry breaking actually seems to be required!

• Finite entropy is incompatible with symmetry generators that mix 
different static patches. [Goheer, Kleban, Susskind ’03] 

• Said differently,  has no finite dimensional 
representations, so it cannot act on . [Witten ’04] [Parikh, E. Verlinde ’04] 

• Defining the algebra of observables requires the inclusion of an 
observer. [Chandrasekaran, Longo, Pennington, Witten ’22]
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This symmetry breaking actually seems to be required!

• Finite entropy is incompatible with symmetry generators that mix 
different static patches. [Goheer, Kleban, Susskind ’03] 

• Said differently,  has no finite dimensional 
representations, so it cannot act on . [Witten ’04] [Parikh, E. Verlinde ’04] 

• Defining the algebra of observables requires the inclusion of an 
observer. [Chandrasekaran, Longo, Pennington, Witten ’22]

SO(1,d)
ℋ

“clock” that breaks time reversal [César’s + Leonard’s talk]



Implications
In de Sitter, spatial slices are compact so gauge charges associated to 
isometries are constraints. 

• For QFT on fixed dS background,  and  infinite. No issue 
with full isometry group. 

• In dS quantum gravity, ,  is finite and we only require 
invariance under static patch isometries. 

It therefore is natural to consider quantum gravity from a static patch 
perspective. 

GN = 0 SdS

GN ≠ 0 SdS
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Implications
In de Sitter, spatial slices are compact so gauge charges associated to 
isometries are constraints. 

• For QFT on fixed dS background,  and  infinite. No issue 
with full isometry group. 

• In dS quantum gravity, ,  is finite and we only require 
invariance under static patch isometries. 

It therefore is natural to consider quantum gravity from a static patch 
perspective. 

GN = 0 SdS

GN ≠ 0 SdS

Let’s see how this appears in entropy computations
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JT Gravity on de Sitter Space

12

We’ll now see how to apply these ideas to dS JT gravity.

I = I0(Φ0) +
1

2κ2 ∫ d2x −gΦ(R − 2/ℓ2) + (matter)

Leads to EOM:
−∇a ∇bΦ + gab □ Φ +

2Φ
ℓ2

gab = κ2⟨Tab⟩

R = 2/ℓ2

Different solutions for the dilaton spontaneously break some of the de 
Sitter isometries  “Nearly  gravity”.→ dS2

Can classify solutions based on the different Killing vectors. [Maldacena, 
Turiaci, Yang ’19]

Large entropy Dynamics



Static Solutions
We’ll use coordinates that cover a single static patch. First set :Tab = 0

ds2 = − (1 − r2/ℓ2) dt2 + (1 − r2/ℓ2)−1 dr2

Φ = ϕ0
r
ℓ

Entropy of BH + dS horizon:

S =
4π
κ2

Φ0
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Static Solutions
We’ll use coordinates that cover a single static patch. First set :Tab = 0

ds2 = − (1 − r2/ℓ2) dt2 + (1 − r2/ℓ2)−1 dr2

Φ = ϕ0
r
ℓ

Entropy of BH + dS horizon:

S =
4π
κ2

Φ0

13

r =
ℓ

r =
− ℓ

BH region

Cosmo region

Since  only 
non-gravitational regions are at 

Φ ∼ 1/Geff

I±

Killing vector ∂t



Bunch-Davies Vacuum
Now we turn on (conformal) matter. The standard vacuum state is 
Bunch-Davies.

We can exactly solve backreaction. Using null coordinates , 
we find:

σ± = t ± r*

⟨T±±(σ±)⟩ =
πc

12β2±

β+β−

σ+σ−

Φ = ϕ0
r
ℓ

+
cκ2

96π

This is a thermal equilibrium, no time dependence!
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Entropy of Radiation
We’ll now compute the entropy to see if there’s an information 
paradox.

To compute the entropy of the radiation, we use the island formula. 
[Engelhardt, Wall ’14] [Review: Maldacena, Turiaci, Yang ’19][Svesko, Verheijden, E. Verlinde, Visser ’22] + […]

S(R) = min, exti [ A(i)
4GN

+ SvN(R ∪ I)]

Best understood when region  is non-gravitational.R
16

1. : (Hawking saddle) 

2.  (Page saddle)

I = ∅

I = non-trivial

Two options:



Islands in de Sitter
Where can we put a “reservoir” in 2d de Sitter? Different approaches 
have been taken:

Black Hole in dS island:

+ : Conventional islands, finite entropy

- : Island associated to the BH

17

Inflationary island:

+ : Pure dS space, finite entropy
- : Islands are timelike separated, 
    contour ambiguity

[Hartman, Jiang, Shaghoulian ’20] 
[Balasubramanian, Kar, Ugajin ‘20] 
[Levine, Shaghoulian ‘22] 
+ […] 

[Chen, Gorbenko, Maldacena ’20] 
+ […] 
 

R

I I



Islands in de Sitter
Let’s take the perspective from a static observer.

Static reservoir island:

+ : Pure dS, static patch perspective

- : Freeze gravity by hand, 
     no dynamics, island backwards 
     in time

To have a sensible island for a static patch observer we want:

18

1. Region of weak gravity. 

2. Dynamics.

[Sybesma ’20] 



Breaking Thermal Equilibrium
We are interested in computing entropy collected by an observer. 

The appropriate state is non-equilibrium. [LA, Parikh, van der Schaar ’19][LA, Sybesma 
’21]

β−

σ+σ−

⟨T−−(σ−)⟩ =
πc

12β2
−

⟨T++(σ+)⟩ = 0

Φ = ϕ0
r
ℓ

−
cκ2

96π (1 + 2
r
ℓ

log(x+/ℓ))
Leads to non-trivial backreaction:
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Breaking Thermal Equilibrium
We are interested in computing entropy collected by an observer. 

The appropriate state is non-equilibrium. [LA, Parikh, van der Schaar ’19][LA, Sybesma 
’21]

β−

σ+σ−

⟨T−−(σ−)⟩ =
πc

12β2
−

⟨T++(σ+)⟩ = 0 Sets β+ → ∞

Φ = ϕ0
r
ℓ

−
cκ2

96π (1 + 2
r
ℓ

log(x+/ℓ))
Time dependence!

Leads to non-trivial backreaction:
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Modified Penrose Diagram
The Penrose diagram now contains additional regions of weak gravity 
+ singularities.

Φ
=

∞

Φ
=

∞

Φ = ∞ Φ = − ∞In  coordinates, the stress tensor is:x±

T++(x+) = −
c

48π(x+)2

T−−(x−) = 0

signals flux

This kills two birds with one stone!

1. Generates a flux of radiation that we can compute the entropy of. 

2. Introduces a region where gravity decouples.

20

x± = ± ℓe±σ±/ℓ



Evolution of the Solution
The chosen vacuum state has an “eternal” net flux.

Φ
=

∞

Φ
=

∞

Φ = ∞ Φ = − ∞

This leads to backreaction:

timeslice

The cosmological horizon shrinks. When , a singularity 
forms. 

t ≃ (ϕ0/c) ℓ

How does this compare with a putative Page time?
21



Entropy in de Sitter Space
We now compute the entropy of radiation in our non-equilibrium 
state.

S(R) = min, exti [ 2π
κ2 (Φ0 + Φ(i)) + SvN(R ∪ I)]

Extremizing, we find:

1. Trivial island:  

2. Non-trivial:    

S(R) = SvN(R) =
c

12ℓ
t

S(R) ≃
2π
κ2 (Φ0 + Φ(A))
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Entropy in de Sitter Space
We now compute the entropy of radiation in our non-equilibrium 
state.

S(R) = min, exti [ 2π
κ2 (Φ0 + Φ(i)) + SvN(R ∪ I)]

Extremizing, we find:

1. Trivial island:  

2. Non-trivial:    

S(R) = SvN(R) =
c

12ℓ
t

S(R) ≃
2π
κ2 (Φ0 + Φ(A))

Increasing thermodynamic entropy

Decreasing horizon entropy

22



Page Curve for de Sitter
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t0
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Taking the minimum of the two saddles, we get a Page curve.

An estimate is given by the value of the dilaton at the horizon. This 
becomes zero when: 

tend ≃
ℓ
c (Φ0 + Φ(t = 0))) tPage = tend /3

23
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S(R) Thermodynamic entropy of radiation
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Fine-grained entropy

Taking the minimum of the two saddles, we get a Page curve.

What about backreaction?

An estimate is given by the value of the dilaton at the horizon. This 
becomes zero when: 

tend ≃
ℓ
c (Φ0 + Φ(t = 0))) tPage = tend /3
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Formation of Singularity

Φ
=

∞

Φ
=

∞

Φ = ∞ Φ = − ∞

tsing ≃
ϕ0

c
ℓ

However, before the Page time formation of a singularity is 
unavoidable.

Islands allow for information recovery. However, in this state, 
guaranteed to lead to a singularity. The observer dies.

tsing ≪ tPage < tend

24



Finite Thermal Equilibrium
The situation is better if we break the equilibrium only for a finite time. 
[LA, Aguilar-Gutierrez, Sybesma ‘22] 

Need to introduce a bath region separated by a domain wall to have 
weak gravity.

dS region
Rindler space

25

For this to be a JT solution, need to satisfy junction conditions.



Junction Conditions
In JT gravity, the junction conditions are given by: [Engelhardt, Folkestad ’22]

[Φ] horizon = 0

κ2Tablalb + [la ∇aΦ]δ(x−) = 0

These can be solved for different quantum states.

26

In Bunch-Davies we find that the Rindler region “eats” the static patch.



Breaking Thermal Equilibrium

27

We can now break the thermal equilibrium for a finite time.

This introduces an island and allows for information recovery.

[LA, Aguilar-Gutierrez, Sybesma ‘22]

Still, it’s true that . Non-trivial islands in dS require large 
backreaction.

tsing ∼ trecovery
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Summary
De Sitter space has several properties that make it difficult to use the 
island formula to probe :SdS

• Finite entropy suggests only a subset of isometries should be preserved.  

• Within the static patch, there is no non-gravitating region. 

• To define a dynamic subsystem within the static patch requires breaking 
thermal equilibrium.

These points are addressed in a non-standard non-equilibrium state. 

Islands contribute, but a singularity is unavoidable. 

Less drastic state modifications?

29



Some open questions
In future work, would be interesting to see:

• If we can extend the island formula for gravitating regions. [Bousso, 
Penington ’22] 

• If island effects play any role in 4d (inflationary) cosmology / eternal 
inflation. 

• If we can better understand the role of the observer, needed to 
define the algebra of observables. [Chandrasekaran, Longo, Pennington, Witten ’22] 

• If we can study islands in microscopic dS models.
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There is lots to be explored!



Thank you!

laalsma@asu.edu

@AalsmaLars



Scrambling Time

• The scrambling time is given by the time difference 
between sending and recovering.

Gray regions indicate entanglement wedge.

Using the location of the island, we can 
compute when a lightray that exits the 
static patch enters the entanglement 

wedge.

Around Page time:


