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Chern-Simons Theory
Synergy with three-dimensional gravity



In  2+1 dimensions, we have the luxury of casting general relativity in terms of:

Einstein-Hilbert: Metric, curvature

Chern-Simons: Gauge connections 

[Acucharro & Townsend; Witten]

OR

Local variables.
Spacetime is explicit.

Gauge Theory.
Topological nature is explicit. 



How to interpret Chern-Simons theory as a theory of gravity?

It is not just a matter of actions and equations of motion. 
Other important INPUTS are:
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How to interpret Chern-Simons theory as a theory of gravity?

It is not just a matter of actions and equations of motion. 
Other important INPUTS are:

1. Gauge Group: 
Organization of the massless modes.
Determine the surrounding.

2. Boundary Conditions: 
Setup the AdS/CFT dictionary.
Regular spacetime metric.

𝑆*+ A =
𝑘
4𝜋

'
,

𝑇𝑟(𝐴 ∧ 𝑑𝐴 +
2
3
𝐴 ∧ 𝐴 ∧ 𝐴)

𝐴 ∈ 𝑆𝐿 2,ℝ ×𝑆𝐿(2, ℝ): AdS3 Lorentzian Gravity 

𝐴 ∈ 𝑆𝑈 2 ×𝑆𝑈 2 : dS3 Euclidean Gravity

𝐴 − 𝐴-.+ = 𝑂(1)

𝑔/0 ∼ 𝑇𝑟 𝐴1 − 𝐴2 3



Next, we would like to add matter fields
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This has been an open problem. 
How to introduce fields coupled to 𝐴6,7 while 
keeping gravity topological?
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log(𝑍%&'(')[𝑔*+]) =
1
4
𝕎8 𝐴6 , 𝐴7

𝕎8 0)'1
= 6 𝐷𝐴6/7𝑒,9*- :* ;,9+- :+ 𝕎8 𝐴6 , 𝐴7

dS3 Quantum Gravity

Focus mainly on massive scalar fields coupled to dS3 gravity. Why?

o We can use the full power of SU(2) Chern-Simons theory.

o Make predictions for GN corrections without the aid of holography.

o Interesting non-standard representations of SU(2).



dS3 Quantum Gravity

o Gauge group: 𝑆𝑈 2 ×𝑆𝑈 2 leads to dS3 Euclidean Gravity

o Action: −𝑖𝑘3𝑆4) 𝐴3 − 𝑖𝑘5𝑆4) 𝐴5 = 𝐼67 𝑔&' − 𝑖𝛿 𝐼84)[𝑔&']

𝑘6 = 𝛿 + 𝑖 ℓ
=>,

𝑟6= 𝑘6 + 2

𝑘7 = 𝛿 − 𝑖 ℓ
=>,

𝑟7 = 𝑘7 + 2

o Couplings:

o Dictionary: 𝐴6 = 𝑖 𝜔' +
𝑒'

ℓ 𝐿'

𝐴7 = 𝑖 𝜔' −
𝑒'

ℓ
N𝐿'



dS3 Quantum Gravity

Background S3 connections

𝑎6 = 𝑖 𝐿#𝑑𝜌 + 𝑖(sin 𝜌 𝐿! − cos 𝜌 𝐿?)(𝑑𝜑 − 𝑑𝜏)
𝑎7 = −𝑖N𝐿#𝑑𝜌 − 𝑖(sin 𝜌 N𝐿! + cos 𝜌 N𝐿?)(𝑑𝜑 + 𝑑𝜏)

𝑑𝑠! = cos! 𝜌 𝑑𝜏! + sin! 𝜌 𝑑𝜑! + 𝑑𝜌!

𝜌 =
𝜋
2

𝜌
=
0

𝑃 exp\
@
𝑎6/7 ∼ 𝑒!A, 6-B*/+

Holonomies

Geometry: Static Patch

ℎ6 = 1
ℎ7 = −1



Wilson Spool
Construction



Wilson lines

The metric encodes distances: geodesic distances.
What replaces geodesic length in a Chern-Simons theory?

Wilson line encodes the dynamics of a massive point particle. 
Natural replacement of geodesic equation.

[Witten 1989; Carlip 1989; Ammon, AC, & Iqbal 2013; AC, Sabella-Garnier, Zukowski, 2019]
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Geodesic length



Wilson lines

The metric encodes distances: geodesic distances.
What replaces geodesic length in a Chern-Simons theory?

Wilson line encodes the dynamics of a massive point particle. 
Natural replacement of geodesic equation.

[Witten 1989; Carlip 1989; Ammon, AC, & Iqbal 2013; AC, Sabella-Garnier, Zukowski, 2019]

Casimir 𝑐* = −.&
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Wilson lines

The metric encodes distances: geodesic distances.
What replaces geodesic length in a Chern-Simons theory?

[Witten 1989; Carlip 1989; Ammon, AC, & Iqbal 2013; AC, Sabella-Garnier, Zukowski, 2019]

𝑊2 𝐶 = 𝑇𝑟2 𝑃 expD
*
𝐴 = '𝐷𝑈 exp(−𝑆 𝑈, 𝐴 *)



𝑊2 𝐶 = 𝑇𝑟2 𝑃 expD
*
𝐴 = '𝐷𝑈 exp(−𝑆 𝑈, 𝐴 *)

Wilson lines

The metric encodes distances: geodesic distances.
What replaces geodesic length in a Chern-Simons theory?

[Witten 1989; Carlip 1989; Ammon, AC, & Iqbal 2013; AC, Sabella-Garnier, Zukowski, 2019]

Infinite dimensional representation of G.
Encodes quantum numbers of the particle.  Path integral of a single particle state.



Wilson Spool

We want to capture fields. How to get fields from single particles states?



Wilson Spool
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We want to capture fields. How to get fields from single particles states?

Our proposal: to spool



Wilson Spool
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We want to capture fields. How to get fields from single particles states?

Our proposal: to spool
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Wilson Spool
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We want to capture fields. How to get fields from single particles states?

Our proposal: to spool

Connections: Capture the geometry



Wilson Spool
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Representation: carries the mass, single particle info. 



Wilson Spool

We want to capture fields. How to get fields from single particles states?

Our proposal: to spool

𝕎9 𝐴3, 𝐴5 = 𝑖 $
𝒞

𝑑𝛼
𝛼
cos 𝛼2
sin 𝛼2

Tr9(𝑃𝑒
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Measure and contour serve two purposes:
o Regulate UV divergences
o Poles that 𝒞 will wrap make the Wilson loop wind 

arbitrarily many times.



Wilson Spool

We want to capture fields. How to get fields from single particles states?

Our proposal: to spool

𝕎9 𝐴3, 𝐴5 = 𝑖 $
𝒞

𝑑𝛼
𝛼
cos 𝛼2
sin 𝛼2

Tr9(𝑃𝑒
;
<= ∮ ?1)Tr9(𝑃𝑒

/ ;<= ∮ ?2)

“=” b
C

1
𝑛
``Tr8(𝑃𝑒

C
!A ∮ :)”

Caution! Just for intuitive purposes.



Representations of SU(2)
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Representation: carries the mass, single particle info. 
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Representations of SU(2)

𝕎9 𝐴3, 𝐴5 = 𝑖 $
𝒞

𝑑𝛼
𝛼
cos 𝛼2
sin 𝛼2

Tr9(𝑃𝑒
;
<= ∮ ?1)Tr9(𝑃𝑒

/ ;<= ∮ ?2)

Representation: carries the mass, single particle info. 
Casimir of the representation: 𝑐* = 𝑗(𝑗 + 1) = −.&ℓ&

/

But unitary (standard) representations of SU(2) have 𝑗 = 0,1,2, … and positive Casimir!!!!



Non-Standard Representations of SU(2)

Complementary-type Principal-type

𝐿?
E = 𝐿?

𝐿±
E = −𝐿∓

𝑗 = −
1
2 1 + 𝜈 ,

𝜈 ∈ (−1,1)

𝑚!ℓ! = 1 − 𝜈!

𝜒8 𝑧 = Trj 𝑒!A,H6- =
𝑒!A, H+

2𝑖 sin 𝜋𝑧

𝐿?
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E = −𝒮𝐿∓ 𝒮

𝒮: 𝑗 → ̅𝚥 = −1 − 𝑗

𝑗 = −
1
2
1 − 𝑖𝜇 ,

𝜇 ∈ ℝ

𝑚!ℓ! = 1 + 𝜇!

𝜒8 𝑧 = Trj 𝑒!A,H6- =
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2𝑖 sin 𝜋𝑧



Non-Standard Representations of SU(2)

Complementary-type Principal-type

𝐿?
E = 𝐿?

𝐿±
E = −𝐿∓

𝑗 = −
1
2 1 + 𝜈 ,

𝜈 ∈ (−1,1)

𝑚!ℓ! = 1 − 𝜈!

𝜒8 𝑧 = Trj 𝑒!A,H6- =
𝑒!A, H+

2𝑖 sin 𝜋𝑧

Important:
o The norm of states is positive.
o They differ from so(3,1) reps.
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1
2
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Testing the Wilson Spool
One-loop determinants



One-loop determinants

log(𝑍!"#$#%[𝑆@]) = log det −∇< +𝑚<ℓ< /A<

=
1
4
𝕎9 𝑎3, 𝑎5

Does the Wilson spool reproduce the one-loop determinant on S3?

?



𝑃 expT
B
𝑎3/5 ∼ 𝑒<=( 34D1/2

ℎ3 = 1
ℎ5 = −1

Holonomies

𝜒9 𝑧 = Trj 𝑒<=(E34 =
𝑒=( E(<9GA)

2𝑖 sin 𝜋𝑧

Characters

Contour: 𝒞 = 𝒞; ∪ 𝒞"

Figure 2: Left: The integration contour, C = C+ [ C�, defining Wj depicted
in red. Poles in the integrand are depicted as blue “⇥”’s. Middle and right:
Possible deformations for evaluating Wj .

The representations appearing in Wj are precisely the non-standard su(2) representations
discussed in Sec. 3.1 and correspond to the mass of a minimally-coupled scalar field via

j = �
1

2

⇣
1 +

p
1�m2`2

⌘
. (3.64)

The appeal of (3.62)-(3.63) is that all of its components involve quantities that are
precisely defined in Chern-Simons theory. This will allow us to take a step further: we
will be able to evaluate

⌦
logZscalar[S

3]
↵
grav

=
1

4

⌦
Wj

↵
grav

=
i

4
eirLSCS[aL]+irRSCS[aR]

Z
d�Ld�R ei

⇡

2
rL�

2

L
+i

⇡

2
rR�

2

R sin2(⇡�L) sin
2(⇡�R)

⇥

Z

C

d↵

↵

cos↵/2

sin↵/2
�j

⇣ ↵

2⇡
(�L + hL)

⌘
�j

⇣
�

↵

2⇡
(�R + hR)

⌘
,

(3.65)
which is the gravitational path integral (2.81) with the Wilson spool inserted. Here �j(z)
are the characters of the non-standard representations—either (3.33) or (3.49)—and hL/R
are the holonomies of the classical connections aL/R:

hL = 1 , hR = �1 . (3.66)

This is an object that we can systematically compute to any order in GN . It is a prescrip-
tion for coupling massive fields to dynamical gravity using the Chern-Simons formulation
of the dS3 gravity.

In the following subsections we will scrutinise and derive our proposal by tackling
di↵erent fronts. We will start in Sec. 3.3.1 by testing some of the elementary properties
of (3.63): we will discuss gauge invariance, and verify that it correctly reproduces the

21That is, in the metric language, still quantized about the S3 saddle. In the gauge-theory language,
not disconnected by a large gauge transformation from the background connections aL/R.
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/ ;<= ∮ ?2)

Collect appropriate data according to definition
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𝕎9 𝐴3, 𝐴5 = 𝑖 $
𝒞

𝑑𝛼
𝛼
cos 𝛼2
sin 𝛼2

Tr9(𝑃𝑒
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𝜋
6
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1
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𝐿𝑖@ 𝑒<=( <9GA + i
2𝑗 + 1
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−
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Exact agreement with finite contributions to the scalar one-loop determinant!
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Comments 

o Construction of the Wilson spool: for massive scalars we have a derivation of 𝕎8 𝐴6 , 𝐴7 . 

det −∇< +𝑚<ℓ< /A = ]
I∈ℤ
L2,L1

(𝑛 − 𝜆3ℎ3 + 𝜆5ℎ5)(𝑛 + 𝜆3ℎ3 − 𝜆5ℎ5)

Wilson Spool is an adaptation of QNM method for 1-loop determinants [Denef-Hartnoll-Sachdev]
to the Chern-Simons formulation. 

o More general backgrounds: due to the construction of the spool we expect it to work 

(but needs to be checked).

o Wilson spool on AdS3: It works for massive scalars! (and higher spins fields too…) 

o Benefit:  connections are off-shell! We are integrating out matter fields.



Quantum Wilson spool
GN corrections



The quantum proposal is

Einstein-Hilbert: Metric, curvature

Chern-Simons: Gauge connections 

OR

𝑍%&'(') 𝑔*+ = 6𝐷𝜙 𝑒,-!"##$% .,0&'

𝑍%&'(') 𝑀 0)'1 = 6 𝐷𝑔*+ 2
𝑒"3()[0&']𝑍%&'(') 𝑔*+

log(𝑍%&'(')[𝑔*+]) =
1
4𝕎8 𝐴6 , 𝐴7

𝕎8 0)'1
= 6 𝐷𝐴6/7𝑒,9*- :* ;,9+- :+ 𝕎8 𝐴6 , 𝐴7



𝕎8[𝑆?] 0)'1 = 6 𝐷𝐴6/7𝑒,9*- :* ;,9+- :+ 𝕎8 𝐴6 , 𝐴7

𝒵0)'1[𝑆?] = 6 𝐷𝐴6/7𝑒,9*- :* ;,9+- :+

The next challenge is to quantify gravitational path integrals.

o Consider fixed topology, still all order in perturbation theory in GN.
o We need to adapt exact results in Chern-Simons theory:

q Level is complex
q Background connection is not trivial

o Assure that exact results are compatible with the non-standard representations 



Partition function

There are two things to keep in mind: 

q Level is complex: 𝑘 = 𝛿 − 𝑖𝑠
q Background connection is not trivial: 𝑃 expT

B
𝑎3/5 ∼ 𝑒<=( 34D1/2

We adapted exact methods to incorporate these tweaks:

o Abelianisation [Blau-Thompson]

o Supersymmetric Localization [Kapustin-Willet-Yaakov]
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! )+I+

1
sin!(𝜋 (𝜎6+ℎ6)) sin!(𝜋 (𝜎7+ℎ7))

with 𝑟6/7 = 2 + 𝑘6/7



Partition function
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Partition function

= 𝑖𝑒"
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Wilson loop

Care is also needed for exact methods used to evaluate a Wilson loop, since 

q Level is complex: 𝑘 = 𝛿 − 𝑖 𝑠
q Background connection is not trivial:
q Non-standard representations of SU(2)!

𝑃 expT
B
𝑎 ∼ 𝑒<=( 34D

𝑊8 𝑆? -L(!)
= 𝑒,) -/0 ' 6𝑑𝜎 𝑒

,A
! )I

1
sin! 𝜋 𝜎 + ℎ 𝜒8 (𝜎 + ℎ)

𝜒9 𝑧 =
𝑒=( E(<9GA)

2𝑖 sin 𝜋𝑧

Adapted exact methods to incorporate these tweaks:

Where the character of the non-standard rep is 



Wilson loop

Care is also needed for exact methods used to evaluate a Wilson loop, since 

q Level is complex: 𝑘 = 𝛿 − 𝑖 𝑠
q Background connection is not trivial:
q Non-standard representations of SU(2)!
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Adapted exact methods to incorporate these tweaks:



Wilson spool

Combining these results, the quantum Wilson spool is
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Wilson spool

Massive scalar fields coupled to dS3 quantum gravity

What do we do with this?
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Wilson spool

Mass renormalization

𝑚7
!ℓ! = 𝑚!ℓ! + ST

U
𝑚=ℓ=𝑒"!A|Pℓ| >,

ℓ

!
+… Large mass limit (for simplicity)

Concrete predictive statement about how dynamical gravity renormalizes QFT

Massive scalar fields coupled to dS3 quantum gravity
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Conclusions



We have introduced a new object: the Wilson spool.

o Allows us to incorporate matter fields in the Chern-Simons formulation 
of 3D gravity.

o Tested at GN → 0 , where the Wilson spool reproduces the one-loop 
determinant of massive scalar fields.

o We can also make predictions for quantum corrections, without the 
aid of holography. 
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Wilson lines, open spools

Quantum corrections in AdS3
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Massive higher spin fields

Sum over topologies

Wilson lines, open spools

Quantum corrections in AdS3

Edge Modes

log 𝑍������ versus log 𝑍������

Thank you!


