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Why study EFTs?

1) Because they parameterise all measurable effects

EFT: Given some field content (¢, ¥) and some symmetry
assumptions (Poincaré, i) — e'“), 1p — 1e™'*), write down all
invariant local operators

L= +c @) ) + ... + 2 (e )D(y,uh) + . ..

At the amplitude level, a basis of EFT operators spans all possible
contact interactions among the known states

A (D129 (3)(4)) =
v(p2 )" u(p1)¥(pa)yuu(ps) (c1 + c2s +...) + perms

which can be joined together by light propagators to make the
most general perturbative amplitude consistent with locality.



Why study EFTs?

2) Because they encode the low energy vestiges of all heavy new physics

Top down: Matching a UV theory with a heavy vector onto the

EFT by Taylor expanding amplitudes in ﬁ

A ($(1)P(2)1(3)1(4))
2

_ € 8uv —
= V(p2)y"u(p1)—— 77 ()7 u(p3) + perms

e? e’

= v(p2)v" u(p1)V(pa)vuu(ps3) (_W ~ WS +.. ) + perms
= 7(p2)7" u(pr)7(pa)vuti(p3) (1 + G5 + ....) + perms

Bottom up: All EFT operators lead to unitarity violation at some
energy E scale

A (D(1)P(2)v(3)i(4))
= V(p2)Y*u(p1)V(pa)y,u(p3) (c1 + cos + ...) + perms
~ (C1E2 + C2E4 + .. )



Study the (simplified) EFT of the SM scalar sector

We observe four scalar degrees of freedom in high energy collisions:
the Higgs boson and the three longitudinal components of the
W™, W~ and Z. What field theory should we use to parameterise
their interactions?

On first principles, what is the difference between scalar sectors of:

» SMEFT: built about the electroweak preserving vacuum, out
of fields ¢ that linearly realise electroweak symmetry, and

» HEFT: built about our low energy vacuum, out of fields h, 7
that don't?



Experimentally, this is slightly moot

Experimentally, the operators of SMEFT and HEFT are just
different bases for parametrising the Lorentz structures in the
non-factorisable pieces of amplitudes.

This means that any finite set of data (in the absence of light new
particles) can be fit by either a subset of SMEFT operators or a
subset of HEFT operators.

It is rather a question of the sizes of various operators’ coefficients
with respect to phenomenologically motivated UV completions. |.e.
is the subset of SMEFT operators at dimension 6 enough to
describe any deviations we may measure in experiment?
These latter imply correlations, e.g.,

1 1
|H|® = g+ h)® > > 3hE s 2

50 8Vgh4



This talk

Use the simplifications of

» ignoring fermions & vectors;

» (global) custodial symmetry;

» no lagrangian terms with more than two derivatives.
We draw heavily on recent work in the literature

» (Alonso, Jenkins, and Manohar 2016)

» (Chang and Luty 2019)

» (Falkowski and Rattazzi 2019)

» (Abu-Ajamieh, Chang, Chen, and Luty 2020)

to identify features of the field-space manifold that are unique to
HEFT, and present perturbative UV completions that generate
these features.

| remark on more practical (finite order) issues of convergence at
the end.



SMEFT (Standard Model Effective Field Theory)

see also (Alonso, Jenkins, and Manohar 2016) for details
Comprising four equivalent real scalars

é1

> | ¢ > 7 1 (1 t+ig

o= g |0 2790 H_\ﬁ<¢4+i¢3>
b4

where O € O(4) D SU(2) x U(1). Electroweak symmetry is
linearly realised on the ¢.

Then the terms in the Lagrangian are

Lo = 506 09) = (G- - )
Loweer = SA(G- 9)(05-08) + 3B (3-8) (5007 -V (5.8) + 0 (8")
T R 2 o
50505+ 58(3-9) (5092 - v (5-9) +0(0") .



HEFT (Higgs Effective Field Theory)

see also (Alonso, Jenkins, and Manohar 2016) for details
Built from a real h and a unit vector 7 comprising 3 Goldstones 7’

I'I1:7T1/V
R n2:772/v
h, n= n3:7T3/V ’

n4:\/1—n%—n§—n§

upon which the electroweak symmetry is non-linearly realised

h—h , A—0fr,0¢e0(4).

The lagrangian is
1

L on? + S+ B (90 - %)\(h2 + 2vhY?

ﬁSMZE
L1re o am2 . L1212 iam2 O 4

»CHEFT:E[K(h)} (0h) +§[VF(’7)} (0m)" =V (h) + 0 (%)
1

= Low? + LpF (0 - vim + 0 ()

[Canonically F(0) =1, V/(0) = 0]



Do SMEFT and HEFT describe the same physics?

In other words, can we write SMEFT as HEFT, and HEFT as SMEFT?

-,

Loerr = SAG - §)(05-08) + 5B (5-8) (5- 007 ~ v (3 9)

Writing
¢ = (vo + h)n(~)
always transforms a SMEFT into HEFT.

1
2

A+ (vo + h2B] (Oh)2+2 [(vo + h)2A] (97— V/

LSMEFT—HEFT = >

with A, B and V even functions of vy + h.



HEFT — SMEFT?

Consider
L=Y(14 0 2(8h 2t tuasna (34 A 2(aﬁ)tv
S 2 2va A VAT AN\ 4 4yy

With the Higgs redefinition

(and vg = 2va) is actually the Standard Model

- %(ahB)Z n %(VB + hg)2 (0 — V = |oH? — V.
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HEFT — SMEFT?

Luerr = S[K (NP + J1vF (P02~ V (h)

Writing

(v0+h):\/$-7$; ﬁ:\/%

might transform a HEFT into a SMEFT?

1 2,:2 o -1 K2 2F2 o
LHEFTSMEFT = 2‘;;‘5(3¢'8¢)+2 (M - W) (¢-0¢)>~V
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Field redefinitions are coordinate transf. in field space
(Coleman, Wess, and Zumino 1969)

Field redefinitions that leave the S-matrix unchanged are smooth and
invertible!

— 1d"
¢:¢(77):Zmdﬁﬁ"=Co+6177+62772+c3773+-~-
n=0 "

... because any field interpolating single particle states will do to extract amplitudes from correlators

im  (pF —m)]] li

m
f pl.2—>m2,p0>0 i qu—>m2,q0>0

x T [ dtye ™ T [ die™ 7 0IT{80). - 66a) - }10)
; ;

(g7 — m°)

= [Ticolelp) I TTI0Ilai) (g1 - - - Ipv - o< [TIcOInlpi) | TTICOImIa) [Kar - - 1 - - )
i J i Jj

Restrict to ¢(n) real analytic, so each field choice corresponds to a
choice of coordinates on a real analytic manifold. Can probably relax this
assumption.

!Note: No derivatives as working to fixed derivative order in £
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Geometric picture of scalar effective field theory

On a real analytic manifold, lagrangian defines a metric and a
potential function

1 m 8¢ a(ﬁj map. n
£ = 3a(00,6 05~ V6) = 3 (a6l 5 52 ) 0" — V(o)

We want the lagrangian to be analytic, so we can expand in a
series of local EFT operators

1 1 . .
=5 (Z Egij,kl...k,,(o)¢k1m¢k") Opd' 0+ ¢ — (Z Vi ks (0)051 .. ”)
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Geometric picture of SMEFT & HEFT

Cartesian vs. polar coordinates, see (Alonso, Jenkins, and Manohar 2016)

0(2) sym. axis

&pipj = A(¢¢)6u+5(¢¢)¢l¢J
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When is a HEFT not a SMEFT?

1) When it's a funnel (Alonso, Jenkins, and Manohar 2016)
O(2) sym. axis

= SOV (W@ (0

Require geodesic distance of closed O(2) orbits to be non-zero
everywhere

F(h) #0

then there's no fixed point about which to expand in SMEFT
coordinates.
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When is a HEFT not a SMEFT?

2) When it's a cone

Lueer = (OB + 5 [vF (N(07)° ~ V (h)

Suppose F(—vy) = 0 for some vy. The
HEFT chart is degenerate, and the HEFT
lagrangian may hide non-analyticities.

To diagnose non-analyticites, can use curvature invariants

6F" 6 2
R=—"p + g 1= (]
3V’
2\/:\/// e
v + 7

As h — —vp and F — 0, R — oo (a conical singularity) unless
F'(—vo) =1 and F"(—w) =0.

If 3n, (V2)"R — oo and/or (V2)""1V — oo at the fixed point,
it's HEFT. Otherwise, it's SMEFT.
16




HEFT from extended scalar sectors

Using functional tree-level matching

Functional matching means evaluating the partition function

exp(iSert[psm]) = /D¢BSM exp(iSuv[psm, Pesm])

At tree-level (mean field level)

dSyv
0®psm

Sertlosml = Suv[psm, Pism], where GEgyy solves

We will show that Sgpt is HEFT and looks like
2

» a funnel when ®ggy has an electroweak breaking vev;

» a cone when $gsp gets all its mass from the Higgs vev.

2that remains non-zero when the Higgs vev is turned off
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Zy singlet example
Lov =1oH + 5 (05)

1 1
— (;ﬁ,HF + A |H* + E(m2 +Kk[H]?)S? + 4)\554>

2 HI2
555% = (+mP+k|HP+2s52)S =0 = S°=0,+, /-’"*Aﬂm(aﬂ)
S

Choose the non-trivial branch of S
K2 (9l H2)®
4)\s (m? + k|HJ?)

m? + k| H?)?
O L
4)s

Lerr =[0H|* —
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Z, singlet example: in pictures (r = V2HTH)

1 1 1
Lyv = [0H” + *( )2—(—2| |2+>\H|H4+2(m2+’€H|2)52+4>\554i
1 p

; @@

o

w

.iiii“im‘\\v
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2 ///////a\ 2

v’ SMEFT XSMEFT



Triplet example
Loy =|0HP + 5 (8¢)

1 1 1
— (—;ﬁ,HF + Au|H|* + 5m2<1>2 - 5MHTaaH<1>3M|H\2qﬂ + 4>\¢<1>4>

Reparameterise as

of 0 0 ﬁl HTUIH feR
S, =—Fexp| O 0 B Hto?H with ,
r —B1 =B 0 Hfg3H Bi € [0,27‘()
where r = V2HTH and 2 = ®2, giving potential
1 1 1 1 1
V:—Euﬁr2+§m2f2+ZAHr4+§m2f2+ZA¢f“
. N2
1 2, Mf (HTU'HB') t 31\252
oV oV 1
=0 =0;—| =—Zpr+(m+sr’)f+ef> =0
e — G 5 |5 2 +(m*+5r?) f+o
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Triplet example: in pictures

4f2 , 1[(F)? ar f N2 [2F2] (it 2 o2
Lerr = [1+7] |OH+3 [r2+r4 (o(HH)) +

YSMEFT XSMEFT 21



Zy singlet example: loop level

Loy =|0H)? + = (35)

1 1
= (B I+ 5 (7 4 £IHR) S+ 2

exp(iSert[¢psm]) = /D¢BSM exp(iSuv[psm, Pesm])

. 1 dSyv
_ c _ 2
= exp (ISUV[¢>5M, Dioml ” Tr log (64)64) ‘¢:¢c))

Choose m?, k > 0 such that we're on the trivial S = 0 branch

1 /€2 242
o|H
384w2nﬂ.+ﬁ\Hf( HI7)

1 2 2\2 I 3
5 7r2(m + K| H|%) (In-i—2

m? + i |H|?

LerT :|6H|2 +

+ [ HI? = M H* +

1 K2

R(H=0)= 3272 m2



EFT convergence
Expand AV =

RIH2 k2 N
XsMEFT = 1"2‘ =20 <1+—)

2 242 /,1,72 3 .
64#2(’” +&|H|%) ('“ mirR HE T 2 | N powers of

2m? 7
2 2
(\HI o) % h h\?
XHEFT = > =5 12—+ (—
m2+§nv0 2m? 4+ Rvg | w vo
. . . 2
and consider radius of convergence in terms of r = 7.
2 kY%
A
2| s -
|H| EFT 15 Lo 15 Bl
HEFT® HEFTHE
bey | ' s, 10
0.5 0.5)
E Vg o0 16 8 10 %03 1 8 10
N k k
(4
2 =2 =2
m ] e . 2
7? %Vg(l’ —+ 1 : Hn-“r'- j - HEFT®
5 1-0) N ey 10)
0.5) 0.5)
0. 0.0°
2 4 6 8 10 2 4 8 10
Fimax k
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Amplitudes are covariant quantities

1 1 i i 1 1 n
L= § (Z mgfj,ky..knékl cee ¢kn) 8(25 a(ﬁ/ - (Z mv’klmkn(ﬁk s ¢k )

The partial derivatives gj; (,...k,) and Vi k, must combine in
amplitudes to form coordinate invariant objects: covariant
derivatives of the Riemann curvature tensor and potential

= SRr;hhmjih...h + Vi(mimb...h)
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Sin%ularity causes factorial growth of amplitudes
f R diverges at fixed point, so does Taylor ex-

pansion about vacuum

(*Vo)n n!
Y Rph. =00 = Ry pl—=—
. —— n!

As R = —2ghhg7ri7rj Rﬂ-ihhﬂ'j + gﬂiﬂ—jgwkﬂl R7T,-Trk7rj7l'/r then

2
n! nlv
|R‘Il',‘hh71'j;h4..h| — _,,gmwj = n_6U’ and/Or
V( V
0 0
4

n! nlv

|R7'r,-1'rk1'r/7rj;h...h| — F(gﬂ,-mgwkwj - gn,-ﬂjgﬂkﬂ,) = _V" (5i/5kj — 5’]5“)
0 0

at our vacuum in the large n limit.

(Similarly if V2V = ghh\/;hh + g™i™i Vir;x; diverges at fixed point

n! nlv2
Iv;‘rr,-7rjh...h‘ — ngﬂfﬂj = 76,6:]

in the large n limit.)
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Perturbative unitarity limits
Following (Chang and Luty 2019), (Abu-Ajamieh, Chang, Chen, and Luty 2020)

Normalise multiparticle states:
(P',alP,B) = (2m)*6™)(P' — P)bag

such that (P',a|S|P, B) = (21)*0®(P" — P)(Jap + iMap)

\. J

Then unitarity (SST = 1) implies

> " (0as + iMap)(Oap — iM5) = Gaa = 1
B

= 2O3Moq = Y _[Mags/?
B
= > [Magl = 1= (1= SMaa)® — (RMaa)?
Bta
<1
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Singularity causes growth in the inelastic cross section

(Chang and Luty 2019), (Abu-Ajamieh, Chang, Chen, and Luty 2020), (Falkowski and
Rattazzi 2019)

~(

nlv2
— 0
0

R ny — g2
M(7r,7rj — h ) = ECOMR7r,-hh7rj;h..Ah+v;(7r,-7rjh...h) |R7r,-hh7rj;h“.h|7 ‘V;W,-'/tjhmh —

> V012 Vol,
| n!

1>Z|M 5’2>Z|M 7['17T1—>hn)
B

) 1 1 E . 2n—4
2 2 IMmm = M) g e i~ 2) ( ZWM>

2
>Z 22221 (ECOM)2”

7r1hh7r1 h.. hVO v
v nl(n—1) \4rvy
Ieadlng to perturbatlve unitarity violation at Ecom ~ 4mvp.

)I

(Ultimately unitarised by the particle whose mass comes entirely from EWSB. E.g.
m? = \|H|? < (47w)?.)
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Summary (1)

A geometric picture makes manifest the connection between scalar
field theory and its amplitudes, its connection to UV completions,
and the physical significance of non-analyticities.

There is no SMEFT expansion for a manifold that looks like a
» funnel (extra sources of EWSB);
» cone (particles that get all their mass from EWSB).

Even if there is a SMEFT expansion, it will not converge at our
vacuum unless (roughly) all BSM particles get the minority of their
mass from EWSB (v < A ~ g—’i’)

Cones make
nl . . . . . .
> 7 growth in amplitudes with n Higgses (v is geodesic
distance to singularity from our vacuum);

> perturbative unitarity violations Ecom ~ (47vp) -

28



Summary (2

SN—r

XSMEFT

Singularity infinite distance away. From in-
tegrating out extra sources of EWSB.

XSMEFT

Singularity finite distance away, HEFT
power counting and unitarity violation
Ecom ~ 4mvy. From integrating out mass-
less particles.

~ SMEFT

Valid SMEFT expansion about fixed point,
does not converge at our vacuum. Imprac-
tical.

v
v
-
\ 4

v SMEFT

Valid SMEFT expansion converges at fixed
point and our vacuum. All BSM particles
get minority of mass from EWSB.
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