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The S-matrix

● Fundamental object of interest in physics.
● Leads to predictions for colliders.

– Standard model observables computed to NNLO.
● Thought to be more fundamental than QFT in the 1950s.

– S-matrix bootstrap program having a resurgence.
● Properties extensively studied.

– What is the best way to encode its content (spinors,
twistors, amplituhedron)?

– What are its symmetries (dual conformal invariance,
Steinmann relations)?

● Despite this interest, the S-matrix does not exist.
– S-matrix elements are divergent in perturbation theory and

zero non-perturbatively in theories with massless particles.
– Why are calculations that have already been done still

valuable?
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Outline

● Introduction - What is the S-matrix?
– Traditional definition of S-matrix
– Reason why the S-matrix does not exist: infrared (IR)

divergences
● Ideas for IR finiteness

1. Cross section method
→ IR finite cross section σ ∝ ∫ ∣ ⟨f ∣S ∣i⟩ ∣2dΠf

2. Modify S-matrix
→ IR finite S operator

3. Modify scattering states (Coherent states)
→ IR finite S-matrix elements, Sfi = ⟨f ∣S ∣i⟩
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Introduction - What is the S-matrix?

● Cross sections, decay rates, and other observables are
proportional to squares of S-matrix elements:

σ ∝ ∫ ∣ ⟨f ∣S ∣i⟩ ∣2dΠf , Γ ∝ ∫ ∣ ⟨f ∣S ∣i⟩ ∣2dΠf

● Intuitively: S-matrix gives the probability amplitude for
an initial state ∣i⟩ at t = −∞ to transform into a final state
∣f⟩ at t = +∞.

– Idea: S = limt→∞ e−iHt? Gives infinitely oscillating phases
when acting on energy eigenstates.

– Resolution: Project onto free states at t = ±∞.

3



Introduction - What is scattering?

t=−∞ t=0 t=∞
time

e−iH0t ∣i⟩

freely evolving state
in far past

e−iH0t ∣f⟩

freely evolving state
in far future

e−iHt

scattering,
evolution with H

e−

V

Sfi = lim
t±→±∞

⟨f ∣ eiH0t+e−iHt+eiHt−e−iH0t− ∣i⟩
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Introduction - What is scattering?

S-matrix: probability amplitude of measuring ∣f⟩ given ∣i⟩

Sfi = lim
t±→±∞

⟨f ∣ eiH0t+e−iHt+eiHt−e−iH0t− ∣i⟩

∣i⟩e−iH0t

e−iHt

∣f⟩ e−iH0t

t=−∞ t=0 t=∞
time

S

In QFT: Calculate using Feynman diagrams in perturbation
theory.

e−

e−

e−
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Introduction - Traditional definition of S-matrix

Sfi = lim
t±→±∞

⟨f ∣ eiH0t+e−iHt+eiHt−e−iH0t− ∣i⟩

Free Theory: S = 1 Sfi = ⟨f ∣i⟩ !

QM, short range potential: !

Const. potential H =H0 + V0: Sfi = ⟨f ∣i⟩ lim
T→∞

e−2iV0T ?

QED: S = 1 − α
ε2 +⋯=-∞?

S = exp{− α
ε2 } = 0?

Interactions do not vanish as t→ ±∞ in QED

e−
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Problems with S-matrix in Quantum Field Theory

Calculations of probability amplitudes ⟨f ∣S∣i⟩ sometimes give
infinity: ⟨f ∣S∣i⟩ =∞

● Problematic since probabilities pfi ∝ ∣⟨f ∣S∣i⟩∣2 should be
less than 1.

● UV divergences occur at high energies.
– Arise since we assume theory still holds at very high

energies.
– Remedy using renormalization.
– S-matrix well-defined in theories with mass gap.

● IR divergences occur at low energies in theories with
massless particles.

– No proof of LSZ.
– Despite these problems, use S-matrix to make predictions.
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Motivations for studying IR finiteness

● Understand analytic properties and symmetries of the
S-matrix.

– Firmer theoretical foundation when S-matrix is finite.
– May be advantages to studying a well-defined S-matrix.

● Define finite
– S-matrix elements: ⟨f ∣S∣i⟩

– Cross sections: σ = ∫ dΠf ∣⟨f ∣S∣i⟩∣
2

– Observables

● Connect to asymptotic states and asymptotic
symmetries.

8



IR divergences in QFT

p + k

p

k

θ

Propagator: 1
(p+k)2 ∼ 1

∣k∣(1−cos θ)

Singularities: ∣k∣→ 0 soft
Singularities: θ → 0 collinear

IR divergences
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Ideas on how to get IR finite quantities

1. Cross section method
→ IR finite cross section σ ∝ ∫ ∣ ⟨f ∣S ∣i⟩ ∣2dΠf

● Bloch-Nordsieck theorem
● KLN theorem

2. Modify S-matrix
→ IR finite S operator

3. Modify scattering states (Coherent states)
→ IR finite S-matrix elements, Sfi = ⟨f ∣S ∣i⟩
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1. Cross section method
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1. Cross-section method
2. Modify S-matrix to SH

3. Coherent states



Cross section method - Introduction

● Idea: Cross section is measurable and needs to be finite.
● Detecting an electron, perhaps a photon with little energy
or one close to the electron escaped detector.

– All physical detectors have a finite resolution.

e−

● A sum over all processes consistent with detector
measurement should give a finite quantity.

● Easiest framework to start with → theorems tell us how to
proceed.

– Bloch-Nordsieck theorem
– KLN theorem
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Theorems on IR divergences

Bloch-Nordsieck (1937): Soft IR divergences cancel in QED
when summing over final state photons with finite energy resolution.

Example: Z → e+e− + final state photons

S S†

o Γ ∝ finite

o Γ ∝ −
1
ε2
−

3
2ε

+ finite

o Γ ∝
1
ε2
+

3
2ε

+ finite
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me=0

Dim reg

CM frame

me=0

Dim reg

CM frame

1. Cross-section method
2. Modify S-matrix to SH

3. Coherent states



Theorems on IR divergences

Bloch-Nordsieck (1937): Soft IR divergences cancel in QED
when summing over final state photons with finite energy resolution.

Doria, Frenkel, Taylor (1980): Counterexample in QCD:
qq → µµqq + final state gluons is soft IR divergent at 2-loops.

KLN Theorem (1962-64): S-matrix elements squared are IR
finite when summing over final states and initial states within
some energy window:

∑
f,i∈[E−E0,E+E0]

∣ ⟨f ∣S ∣i⟩ ∣2 <∞

Stronger KLN Theorem (2018): S-matrix elements squared
are IR finite when summing over final states or initial states:

∑
f
∣ ⟨f ∣S ∣i⟩ ∣2 <∞, ∑

i
∣ ⟨f ∣S ∣i⟩ ∣2 <∞
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KLN theorem requires forward scattering

Stronger KLN Theorem (2018): S-matrix elements squared
are IR finite when summing over final states or initial states:

∑
f

∣ ⟨f ∣S ∣i⟩ ∣2 = ⟨i∣S†
∑
f

∣f⟩ ⟨f ∣S ∣i⟩ = ⟨i∣i⟩∝ 1 <∞

Unitarity: all probabilities sum to one

Example: γγ→ e+e−

∫

2

dΠf ∝
α2

E2
CM

(−
1
ε
+ 1)

∫

2

dΠf ∝
α2

E2
CM

(
1
ε
− 1) + . . .

Unitarity: all diagrams (to any non-zero order α) sum to zero
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Conclusion of cross section method

Conclusion: KLN theorem = unitarity.

If we sum over all possible diagrams we get 1 by unitarity,
and 1 is IR finite.

Not closer to finding the minimal set of diagrams needed for
IR finiteness.

Need new ideas beyond the cross section method.
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1

2. Modify S-matrix to SH
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2. Modify S-matrix to SH

Recall: Interactions do not vanish as t→ ±∞ in QED.

e−

Redefine S-matrix in theories with long range interactions:

Sfi = lim
t±→±∞

⟨f ∣ eiH0t+e−iHt+eiHt−e−iH0t− ∣i⟩

→ SHfi = lim
t±→±∞

⟨f ∣ eiHast+e−iHt+eiHt−e−iHast− ∣i⟩

∣i⟩e−iH0t

e−iHt

∣f⟩ e
−iH0t

t=−∞ t=0 t=∞
time

S

∣i⟩

∣f⟩

e−iHast

e−iHt

e−iHast

t=−∞ t=0 t=∞
time

SH
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Questions

SHfi = lim
t±→±∞

⟨f ∣ eiHast+e−iHt+eiHt−e−iHast− ∣i⟩

(i) How to pick Has?
● Criteria: IR finite, easy to calculate, useful in practice,
consistent with every measurement to date.

(ii) How to calculate matrix elements of SH?
● Not useful if too complicated to calculate.

(iii) How to interpret SH?
● Not sufficient to have an IR finite, calculable quantity; must
be useful in practice.

(iv) Directions forward
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2. Modify S-matrix to SH

3. Coherent states



Choice of Has

Answers:

(i) How to pick Has?

Use factorization, and techniques from Soft-Collinear
Effective Theory (SCET):

Has =HSCET

● IR finite by construction: Possible because of universality
of IR divergences in gauge theories.

● States evolve independently of how they scatter.
● New UV divergences dealt with using renormalization.
● No scales, most integrals are zero in dimensional
regularization.
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Calculation trick in perturbation theory

(ii) How to calculate matrix elements of SH?

SHfi = lim
t±→±∞

⟨f ∣ eiHast+e−iHt+eiHt−e−iHast− ∣i⟩

= lim
t±→±∞

∑
f ′
∑
i′

⟨f ∣ eiHast+e−iH0t+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ωas
+

∣f ′⟩

× ⟨f ′∣ eiH0t+e−iHt+eiHt−e−iH0t−

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

∣i′⟩ ⟨i′∣ eiH0t−e−iHast−

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ωas
−

∣i⟩

=∑
f ′
∑
i′

⟨f ∣Ωas
+

∣f ′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TOPT
rules

⟨f ′∣S ∣i′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

usual
Feynman

rules

⟨i′∣Ωas
−

∣i⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TOPT
rules

TOPT: Time-ordered perturbation theory

(Old-fashioned perturbation theory)
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Three part calculation

Calculation trick in perturbation theory:

SHfi = ∫ dΠ′

f ∫ dΠ′

i ⟨f ∣Ωas
+

∣f ′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TOPT
rules

⟨f ′∣S ∣i′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

usual
Feynman

rules

⟨i′∣Ωas
+

∣i⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TOPT
rules

Calculations split into three parts:

t=0

time

∣i′⟩∣i⟩

t=−∞asymptotic region t=∞central region

t=0

∣f⟩∣ψdout⟩∣f ′⟩

asymptotic region
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Comparing S and SH

Sfi = ⟨f ∣S ∣i⟩

SHfi =∑
f ′
∑
i′

⟨f ∣Ωas
+ ∣f ′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TOPT
rules

⟨f ′∣S ∣i′⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

usual
Feynman

rules

⟨i′∣Ωas
− ∣i⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TOPT
rules

∣i⟩e−iH0t

e−iHt

∣f⟩
e−iH0t

t=−∞ t=0 t=∞

time

S

e−iH0t

e−iH0t

∣i⟩

∣f⟩

e−iHast

e−iHt

e−iHast

t=−∞ t=0 t=∞

time

SH
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Example: Z → e+e− for Has =HSCET

t=0 t=0t=−∞ t=∞

=M0
α

4π [
1
εUV

− 2
ε2IR

− 4+2L
εIR

−8+π2
6 −L2+3L]

=M0
α

4π [ 2
ε2IR

+ 4+2L
εIR

− 2
ε2UV

− 4+2L
εUV

]

⟨e+e−∣SH ∣Z⟩MS

=M0+M0
α

4π [−8+π2
6 −L2+3L]
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me=0, L=ln −E2
CM
µ2

M0∶ LO matrix element

Dim reg, CM frame

me=0, L=ln −E2
CM
µ2

M0∶ LO matrix element

Dim reg, CM frame
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Interpretation of SH

(iii) How to interpret SH?

a. Wilson coefficients in Soft-Collinear Effective Theory
(SCET)

– Encode hard dynamics.
b. Remainder functions in N = 4 Supersymmetric Yang-Mills

theory (SYM)
– UV counterterm fixed by 1-loop SH amplitude makes

2-loop SH amplitude take a simple form in N = 4.

c. Dressed states / Coherent states
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1

3. Coherent States
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Coherent States

● Arise as intermediate steps in SH calculations:

SHfi =∑
f ′
∑
i′

⟨f ∣Ωas
+

∣f ′⟩ ⟨f ′∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⟨fd
∣

S ∣i′⟩ ⟨i′∣Ωas
+

∣i⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∣id⟩

● IR divergent states → IR problem moved from S to states:

∣e− d
⟩ = ∣e−⟩ +

1
ε
∣e−γ⟩ +⋯

● Explicit cutoffs on energy make calculations difficult.

e−iH0t

e−iH0t

∣i⟩

∣f⟩

e−iHast

e−iHt

e−iHast

t=−∞ t=0 t=∞
time

SH

∣id⟩

∣fd⟩

t=0 t=0t=−∞ t=∞

∣fd⟩ 27
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Open Questions

(iv) Directions forward

● What are the analytic properties of SH?
● What can we learn from bootstrapping SH?
● What are non-perturbative properties of SH?
● What are the symmetry properties of SH?
● What is the relation to remainder functions in N = 4 SYM?
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Conclusions

Three methods for obtaining IR finite quantities:

1. Cross section method: Unitarity.
● Content of KLN theorem: All probabilities sum to 1.
● Not closer to finding the minimal set of Feynman diagrams
needed for IR finiteness.

2. Modify S: Natural to redefine S to SH in theories with
long-range interactions.

● Choosing SH based on factorization gives an IR finite,
easily calculable and useful quantity.

● SH exists.
3. Coherent states: Intermediate step in SH calculations.

● Infinite linear combinations of Fock states.
● Hard to do calculations with cutoffs.
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