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The S-matrix

« Fundamental object of interest in physics.
« Leads to predictions for colliders.
— Standard model observables computed to NNLO.
« Thought to be more fundamental than QFT in the 1950s.
— S-matrix bootstrap program having a resurgence.
« Properties extensively studied.
— What is the best way to encode its content (spinors,
twistors, amplituhedron)?
— What are its symmetries (dual conformal invariance,
Steinmann relations)?
« Despite this interest, the S-matrix does not exist.
— S-matrix elements are divergent in perturbation theory and
zero non-perturbatively in theories with massless particles.
— Why are calculations that have already been done still
valuable?



« Introduction - What is the S-matrix?
— Traditional definition of S-matrix
— Reason why the S-matrix does not exist: infrared (IR)
divergences
o Ideas for IR finiteness
1. Cross section method
— IR finite cross section o o [ |(f| S|i)[>dIls
2. Modify S-matrix
— IR finite S operator
3. Modify scattering states (Coherent states)
— IR finite S-matrix elements, Sy; = (f|S|i)



Introduction - What is the S-matrix?

« Cross sections, decay rates, and other observables are

proportional to squares of S-matrix elements:
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o Intuitively: S-matrix gives the probability amplitude for
an initial state |i) at t = —oco to transform into a final state
|f) at t = +o0.

— Idea: S =limy_ o e **? Gives infinitely oscillating phases
when acting on energy eigenstates.
— Resolution: Project onto free states at t = +oo.



Introduction - What is scattering?
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Introduction - What is scattering?

S-matrix: probability amplitude of measuring |f) given |i)
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In QFT: Calculate using Feynman diagrams in perturbation
theory.
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Introduction - Traditional definition of S-matrix

Sﬂ = lim <f’ eiH0t+e—th+eth_ e—iHOt_ |’L>
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Free Theory: S=1 Sri=(fl7) v
QM, short range potential: v

Const. potential H =Hy+Vy: Sy = (f|z‘)T11m e2VoT 9

QED: S=1-%+=-o00?




Problems with S-matrix in Quantum Field Theory

Calculations of probability amplitudes (f|S]i) sometimes give
infinity: (f|S|i) = oo

- Problematic since probabilities py; o< |(f|S|i)|* should be
less than 1.
« UV divergences occur at high energies.

— Arise since we assume theory still holds at very high
energies.

— Remedy using renormalization.

— S-matrix well-defined in theories with mass gap.

« IR divergences occur at low energies in theories with
massless particles.
— No proof of LSZ.
— Despite these problems, use S-matrix to make predictions.



Motivations for studying IR finiteness

« Understand analytic properties and symmetries of the
S-matrix.

— Firmer theoretical foundation when S-matrix is finite.
— May be advantages to studying a well-defined S-matrix.

+ Define finite
— S-matrix elements: (f]S]i)
— Cross sections: o = [ dI1¢[(f|S]i)]?
— Observables
« Connect to asymptotic states and asymptotic
symmetries.



IR divergences in QFT

p
9/
+k
p k\A

1 1
(rek)? ™ TRI(I=cos )

Propagator:

Singularities: |k| -0  soft } IR di
ivergences

0 -0 collinear



Ideas on how to get IR finite quantities

1. Cross section method
- IR finite cross section o oc [ [{f|Si)|*dIl;

¢ Bloch-Nordsieck theorem
o KLN theorem

2. Modify S-matrix
— IR finite S operator

3. Modify scattering states (Coherent states)
— IR finite S-matrix elements, Sy; = (f|S|i)
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1. Cross-section method

1. Cross section method
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. Cross-section method

Cross section method - Introduction

« Idea: Cross section is measurable and needs to be finite.
« Detecting an electron, perhaps a photon with little energy
or one close to the electron escaped detector.

— All physical detectors have a finite resolution.
« A sum over all processes consistent with detector
measurement should give a finite quantity.
Easiest framework to start with — theorems tell us how to

proceed.

— Bloch-Nordsieck theorem
— KLN theorem
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1. Cross-section method

Theorems on IR divergences

Bloch-Nordsieck (1937): Soft IR divergences cancel in QED

when summing over final state photons with finite energy resolution.

Example: Z — e*e” + final state photons
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1. Cross-section method

Theorems on IR divergences

Bloch-Nordsieck (1937): Soft IR divergences cancel in QED

when summing over final state photons with finite energy resolution.

Doria, Frenkel, Taylor (1980): Counterexample in QCD:
qq = ppqq + final state gluons is soft IR divergent at 2-loops.

KLN Theorem (1962-64): S-matrix elements squared are IR
finite when summing over final states and initial states within

some energy window:

) [(f1S i) [* < o0
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Stronger KLN Theorem (2018): S-matrix elements squared

are IR finite when summing over final states or initial states:
?I(fISIi)IZQO, SI{fIS1i)? < oo
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KLN theorem requires forward scattering ;-'

Stronger KLN Theorem (2018): S-matrix elements squared

are IR finite when summing over final states or initial states:

SIS 2 =Gl ST RS (fIS]) = (ili) o< 1 < oo
f !
Unitarity: all probabilities sum to one

Example: vy —efe”
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Unitarity: all diagrams (to any non-zero order «) sum to zero
15



. Cross-section method

Conclusion of cross section method

Conclusion: KLN theorem = unitarity.

If we sum over all possible diagrams we get 1 by unitarity,
and 1 is IR finite.

Not closer to finding the minimal set of diagrams needed for
IR finiteness.

Need new ideas beyond the cross section method.

16



1. C on method
2. Modify

3. er

2. Modify S-matrix to Sy
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1. Cro tion method
2. Modify matrix to Sg

2. Modify S-matrix to Sy 2 Slodity

Recall: Interactions do not vanish as t - +oco in QED.

Redefine S-matrix in theories with long range interactions:
g g
sz' = lim <f’ 61H0t+e—th+eth,e—zH0t, ‘Z)
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time
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Questions : ify S-matrix to Sg

3 Coherent st

(i) How to pick Hag?
o Criteria: IR finite, easy to calculate, useful in practice,
consistent with every measurement to date.

(i) How to calculate matrix elements of Sg?
« Not useful if too complicated to calculate.
(iii) How to interpret Sp?
« Not sufficient to have an IR finite, calculable quantity; must

be useful in practice.

(iv) Directions forward
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1. C on method

Choice of Has 2. Mo?l.ify

3. er

Answers:
(i) How to pick H,s?

Use factorization, and techniques from Soft-Collinear
Effective Theory (SCET):

Has = HSCET

« IR finite by construction: Possible because of universality
of IR divergences in gauge theories.

« States evolve independently of how they scatter.

e New UV divergences dealt with using renormalization.

» No scales, most integrals are zero in dimensional

regularization.
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1. C on method

Calculation trick in perturbation theory 2. Modify

oher
e

(ii) How to calculate matriz elements of S ?
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TOPT: Time-ordered perturbation theory
(Old-fashioned perturbation theory)
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Three part calculation

on method
2. Modify S-matrix to Sy

. Coherent s S

Calculation trick in perturbation theory:

Sfi= [ty [ dm 19217 (718 1) (192 )

| 7 N N —

TOPT
rules

Calculations split into three parts:

asymptotic region t=ro0
time

central region

usual TOPT
Feynman rules
rules
t=00 asymptotic region

t=0

t=0
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Comparing S and Sy

3 Coherent st

S-matrix to Sg

Spi = (f1S1i)
Sti= 2 L SIS SIS 1) (i1 92 i)

fl i ——

TOPT usual TOPT
rules Feynman rules
rules
time time
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1. Cr ection method

Example: Z —» ete” for Hus = Hscpr 2. Modify S-matrix to Sy

3. Coherent es

me=0, L=In ;%

Mp: LO matrix element
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1. C on method
2. Modify

Interpretation of Sy 3

er

(iii) How to interpret Sp?

a. Wilson coefficients in Soft-Collinear Effective Theory
(SCET)
— Encode hard dynamics.
b. Remainder functions in N = 4 Supersymmetric Yang-Mills
theory (SYM)

— UV counterterm fixed by 1-loop Sy amplitude makes
2-loop Sy amplitude take a simple form in N = 4.

c. Dressed states / Coherent states
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on method
-matrix to Sg

3. Coherent states

3. Coherent States
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. C on method
Coherent States : i

-matrix to Sg
3. Coherent states

« Arise as intermediate steps in Sy calculations:
St = 2 2 QTS IS 1) ('1925°6)
fl 1//
(] [i)

« IR divergent states — IR problem moved from S to states:

e N B
e =)+ ley) -

« Explicit cutoffs on energy make calculations difficult.

i) 27



1. C on method

Open Questions 2. Modity

3. er

(iv) Directions forward

« What are the analytic properties of Sg?

« What can we learn from bootstrapping Sg?
o What are non-perturbative properties of Sg?
o What are the symmetry properties of Sg?

o What is the relation to remainder functions in N =4 SYM?
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Conclusions

Three methods for obtaining IR finite quantities:

1. Cross section method: Unitarity.

« Content of KLN theorem: All probabilities sum to 1.
« Not closer to finding the minimal set of Feynman diagrams
needed for IR finiteness.

2. Modify S: Natural to redefine S to Sy in theories with
long-range interactions.
e Choosing Sy based on factorization gives an IR finite,
easily calculable and useful quantity.
o Sy exists.
3. Coherent states: Intermediate step in Sy calculations.

o Infinite linear combinations of Fock states.
e Hard to do calculations with cutoffs.
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