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Quantum annealers background



Quantum computing has a long and distinguished history but is only now
becoming practicable. (Feynman ‘81, zZalka '96, Jordan, Lee, Preskill ... see Preskill 1811.10085
for review). Two types of Quantum Computer:

Type Discrete Gate Quantum Annealer
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e Both types operate on the Bloch sphere: basically measuring 0'7:Z — ( (1) 01 )
where (57]0) = |0), oZ|1) = —|1)) are the possible eigenvector eqns

e Each i represents a single qubit

e A discrete quantum gate system is good for looking at things like
entanglement, Bell’s inequality etc. Also discrete problemes,
cryptographical problems, Shor’s, Grover’s algorithms, etc.

e A quantum annealer is good for looking at network problems but
from our perspective it is also a more natural tool for thinking
about field theory. It is based on the general transverse field Ising
model (Kadowaki, Nishimori):

Hoa(t) = >:>: Jijaz-ZUjZ + th,&-Z + A(t) ZO‘ZLX
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e What does the “anneal” mean?

Hoa(t) = >:>:Jijaizajz + Zhiaiz + A(t) ZO'iX

v J
(111)

(001)

A(t) induces bit-hopping in the Hamming/Hilbert space

(000)

The idea is to dial this parameter to land in the global minimum (i.e. the
solution) of some “problem space” described by J,h:




Thermal (classical) and Quantum Annealing are complementary:

e Thermal tunnelling is fast over broad shallow potentials (Quantum
“tunnelling” is exponentially slow)

e Quantum Tunnelling is fast through tall thin potentials (Thermal
“tunnelling” is exponentially slow — Boltzmann suppression)
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Hence hybrid approach to Quantum Annealing can be useful depending on
the solution landscape:
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More specifically: thermal annealing uses Metropolis algorithm: accept

YA . . ere
random ips with probabilit
;i flip P y o {1 AH <0
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Quantum tunnelling in QFT happens with probability P ~ ¢~ @V2mAH/h

so by contrast it can be operative for tall barriers if they are made thin
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Simple examples of Ising encodings



Encoding network problems in a general Ising model

e Example 1: how many vertices on a graph can we colour so that none touch? NP-hard
problem (from N.Chancellor).

Z

e Let non-coloured vertices have o, = —1 and coloured ones have ocf = +1.

e Add a reward for every coloured vertex, and for each link between vertices i,j we add
a penalty if there are two +1 eigenvalues:

J

’H:—AZUZ-Z—I— Z [O'Z-Z—I—O'jZ—I—O'iZO'-Z]

linked pairs {7,5}



e Example 2: NA2 students are to sit an exam in a square room with NxN desks 1.5m apart.
half the students (A) have a virus while half of them (B) do not. How can they be arranged
to minimise the number of ill students that are less than 2m from healthy students?

e Call the eigenvalue of A == +1 and that of B ==-1. That is if | measure UZat a point to
have value +1 then | conclude that | should put an ill person there, and vice-versa.

e There are N2 spins UEZN—H‘ arranged in rows and columns. | do not care if A>=<A or
B>=<B, but if A>=<B then | put a penalty of +2 on the Hamiltonian (ferromagnetic
coupling). So ...

N N
H = S: S: (8em (Si1)5 + S(i—1)7) + 035 (O(et1ym + Se—1ym)) [1 — OiN 10N +5]
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e Finally | need to apply the constraint that #A = #B:  H(°"%) = A (#A — #B)°
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e Example 2 done with classical thermal annealing using the Metropolis algorithm. Note
this represents a search over 100C50 ~ 2'%° configurations:

0 2 4 6 8

e Importantly the constraint hamiltonian cannot be too big otherwise the hills are too high
and it freezes too early. This makes the process require a (polynomial sized) bit of
“thermal tuning”.



e In principle this could be done more easily on a quantum annealer as the constraints
could be high and it would still work.

e To do this we would simply fill h and J and call the quantum annealer from python as
follows:

response = sampler.sample_ising(h,J,seed=1234+i,num_reads=3000000, num_sweeps=1)

e “response” is a list of [+1,-1,+1,+1 .....] spins ordered by energy

e However the architecture (connectivity of J,h) is limited. (Later)



A field theory problem: Tunnelling in QFT



e We think of the general Ising model as a “universal QFT computer”

e Simple problem to demonstrate encoding QFT — quantum tunnelling in
a scalar theory

e Advantage 1: easy to prepare the initial state (this non-perturbative
process is much easier than preparing scattering states).

e Advantage 2: we could in principle observe genuine tunnelling in the
annealer rather than just simulate it.
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e The analytic result for the tunnelling rate was worked out in
several famous papers by Callan, Coleman, de Luccia and Linde

e Decay rate per unit volume is given by the Euclidean actions of
the O(4) or O(3) symmetric “bounce” solution (for instanton or

thermal resp):
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e Normally solution found by solving Euler-Lagrange equations with boundary conditions:

2
d=¢ | E@ = U, d¢/dp=0 as p— 0,00
dp* ~ pdp
¢ | e——ee ;¢+
Detisfsyf)

e “Escape point” found with overshoot/undershoot method.



e Thick-wall approximation: rescaling arguments give answer in terms of “standard action”

Sy = 3—552 . SY =091 £ =/2/3(1~¢/eo)
S v/ q0 . 60 _ 194 where €0 = 2Mv*/3+/3
\1/2

e Thin-wall approximation: action written in terms of c=0 action (Z2 domain wall)

B 27725

| - 16m°SY
23 '

o4 %3 = 3e?

In principle if we can encode this field theory on a quantum annealer, we would be
able to vary the parameters and perform a tunnelling experiment. As a first step,
we will determine S1: finding the extremum of the action is a quasi-convex problem
(convex in a finite box).



This means for the ¢ = 0 action we will attempt to minimise the Euclidean action holding
the endpoints fixed at +/- v:

S, =20 [ dp 38+ U(G)



Ising chain encoding of scalar QFT



Consider encoding a continuous field value gb(p) at some point, and discretise into N

P(p) = o+ = ¢Po+& ... 9o+ NE

Wish to represent it as a point on a spin chain == domain wall encoding (Chancellor):

BIEIEEIEIEE 1+ 1+1+1+1+1

We translate this to a field value using
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For this to work as a consistent encoding we have to avoid e.g.

BB B T 141 1+

This is the domain- waI'I encodlng Begin in the Ising model with a ferromagnetlc
interaction that favours as few flips as possible, but frustrate at least one by having the
endpoints pinned at -1 ... +1. (Note this is a 1D version of the exam-room example).

H(Chain) — A 0-1 _ O-N Z ; U’L—I—l



For this to work as a consistent encoding we have to avoid e.g.

This is the domain- waI'I encodlng Begin in the Ising model with a ferromagnetlc
interaction that favours as few flips as possible, but frustrate at least one by having the
endpoints pinned at -1 ... +1. (Note this is a 1D version of the exam-room example).

H(Chain) — A 0-1 _ O-N Z ; U’L—I—l

Pins the end spins at oppsing values penalty for different adjacent spin
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To add a potential we can add a contribution to the linear h couplings

+1+1+1 +14+1+1

. only the frustrated
. link contributes



Next add the discretised radial spacetime coordinate: py = /v = v...Mv

N BN
B IS 1 +1+1+1+1
B IS 1 +1+1+1+1
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Everything done so far is then trivially extended in the /| spacetime index:
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Everything done so far is then trivially extended in the /| spacetime index:

chain (chain) o
hevs) = A (01— 0;n) JiNtimn+; = T3 Ofm

1 (QFT) _ _V?gU/(ﬁbO +j€) ; J<N
N LU(¢o + (N = 1)€) ; j=N

Then kinetic terms are as follows:
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Next we need to impose the physical boundary condition with:

/

BC) _ N 2 | A 2
HIP) = 5-(6(0) +v)* + 5 (¢(pnr) —v)?
We can think of these as just boundary mass-term potentials in U:

(BC) (AN (pg+ jE+0v); £=1,V
hNE—I—j = 9 . .
A (po+jE—v); £=M -1,V

Finally add everything together!

1 — %(Chain)—l_%(QFT)—l_H(BC)-



Results for thin wall limit



Can solve classical simulated annealing with the Metropolis algorithm. Again have to

be careful how we set the temperatures and parameters:
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Too cold



Just right (two stage annealing process)
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Same result on Dwave using hybrid quantum/classical Kerberos annealer (It finds
best samples of parallelised tabu search + simulated annealing + D-Wave subproblem

sampling)
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Notably the Kerberos sampler is much more robust than pure simulated annealing.



Why not pure Quantum annealer? The connectivity is not general enough for this

problem (in particular encoding the kinetic terms): it has a Chimera structure ...

But the principle has been proven: we can encode a pure field theory potential on

the chimera structure, so we can experiment with QFT tunnelling (c.f. Johnson 2011)



Thick wall limit: solving PDEs



To find the c =3 solution shown here is less easy because just using the action tends

to give the black line:
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This is because the critical point of 5., = 27r2/ dp p° ( %gb2 + U(gb)) is a saddle.
0

Instead the correct bubble profile is found by solving the E-L PDE by minimising
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It is squared in derivatives, so it can be written mostly as adjustmentsinJ ...

41/3 (QFT) 62
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Multiple fields and dimensions:
the U(1) string



Consider 2D system with 2 fields:

> 1
How = | & 5V, V6" +U ()
0

A
U(pa) = g(ﬁbg + ¢7 — v?)°?

U(1) vortex is again a convex problem: can be discretised as before,
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Future directions

e We have seen how the general Ising model can be used to encode QFT
e Genuine tunnelling of metastable nontrivial (d=0 system)?

e Deduce quantum prefactors as well as classical actions

e GPU encoding for finite temperature (simulated annealling) (c.f. Parisi et al)

e Soliton dynamics?



