The MUonE Experiment:

Pioneering Measurement of the Hadronic Contribution to Muon g-2

Ce Zhang (Cedric)

19th November 2024 Oxford Seminar

LEVERHULME TRUST _____

The MUonE Experiment:

Pioneering Measurement of the Hadronic Contribution to Muon g-2

- ► Muon g 2 Puzzle
- ► The MUonE Experiment
 - Principle
 - Setups tracker, ECAL, beam, ...
 - Test Runs
- Outlook & Summary

Muon g - 2

3

• The anomalous magnetic moment of the muon is connected to spin \vec{s} via gyromagnetic ratio $g: \vec{\mu} = g \frac{e}{2m} \vec{S}$

- g factor quantifies interaction strength
- Dirac predicted g = 2 for spin-1/2 fermions

Muon *g* – 2

- The anomalous magnetic moment of the muon is connected to spin \vec{s} via gyromagnetic ratio $g: \vec{\mu} = g \frac{e}{2m} \vec{S}$
 - g factor quantifies interaction strength
 - Dirac predicted g = 2 for spin-1/2 fermions

5

• Interactions with virtual particles cause g to deviate from 2 (q > 2). Muon magnetic anomaly is defined as:

 $a_{\mu} = \frac{g_{\mu} - 2}{2}$

- connected to spin \vec{s} via gyromagnetic ratio g: $\vec{\mu} = g \frac{e}{2m} \vec{S}$ • g - factor quantifies interaction strength
 - Dirac predicted g = 2 for spin-1/2 fermions

The anomalous magnetic moment of the muon is

Muon *g* – 2

 $a_l = \frac{g_l - 2}{2} = \frac{\alpha}{2\pi} + O(\alpha^2)$ = 0.001 161 40.

Muon *g* – 2

• a_{μ} receives contribution from QED, EW and QCD effects in the SM

- A probe to new physics beyond SM:
 - For possible new physics $a_{\mu}^{NP} \propto (\frac{m_l}{\Lambda_{NP}})^2$
 - Muon is more sensitive by a factor of $(\frac{m_{\mu}}{m_{e}})^{2} \approx 4.3 \times 10^{4}$

• Fermilab utilizes an approach similar to BNL with the same storage ring

• Fermilab utilizes an approach similar to BNL with the same storage ring

• Run-1 results were released in 2021, with Run-2/3 results following in 2023

• Run-1 results were released in 2021, with Run-2/3 results following in 2023

Discrepancy between experiments & theories

• New experimental average with SM prediction (WP-2020) gives > 5σ

Discrepancy between experiments & theories

- New experimental average with SM prediction (WP-2020) gives > 5σ
- Since then, two important developments on SM prediction:
 - Lattice QCD from the BMW (2020)

Discrepancy between experiments & theories

- New experimental average with SM prediction (WP-2020) gives > 5σ
- Since then, two important developments on SM prediction:
 - Lattice QCD from the BMW (2020)
 - New e⁺e⁻ → π⁺π⁻ cross section from CMD-3 (2023)

Disclaimer:

The CMD-3 point is a visual exercise. It is not a fully updated SM prediction!

- TI White Paper result has been substituted by CMD-3 only for 0.33 → 1.0 GeV.
- The NLO HVP has not been updated.
- It is purely for demonstration purposes → should not be taken as final!

Muon g - 2 **Puzzle** Standard Model (SM) predictions

• The uncertainty in the SM prediction of a_{μ} is **entirely limited** by our knowledge of the hadronic leading order contribution a_{μ}^{HLO} ($a_{\mu}^{\text{HVP},LO}$)

Muon g - 2 **Puzzle** Standard Model (SM) predictions

- The uncertainty in the SM prediction of a_{μ} is **entirely limited** by our knowledge of the hadronic leading order contribution a_{μ}^{HLO} ($a_{\mu}^{\text{HVP},LO}$)
- Approaches (at low-E):
 - 1) Lattice QCD Method: Ab-initio calculation on lattice
 - 2) Dispersive Method: using $\sigma(e^+e^- \rightarrow hadrons)$ data

Muon g - 2 **Puzzle** Standard Model (SM) predictions

- The uncertainty in the SM prediction of a_{μ} is **entirely limited** by our knowledge of the hadronic leading order contribution a_{μ}^{HLO} ($a_{\mu}^{\text{HVP},LO}$)
- Approaches (at low-E):
 - 1) Lattice QCD Method: Ab-initio calculation on lattice
 - 2) Dispersive Method: using $\sigma(e^+e^- \rightarrow hadrons)$ data

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}}^{\infty} ds \, \frac{R_{\text{had}}(s) \, K(s)}{s^2}, \quad R_{\text{had}}(s) = \sigma(e^+e^- \to \text{hadrons}) \left| \frac{4\pi \, \alpha(s)}{(3s)} \right|_{Hadrons}^{\mu}$$

Muon g - 2 **Puzzle** Chaotics in $e^+e^- \rightarrow \pi^+\pi^-$ for a^{HVP}_{μ}

• $e^+e^- \rightarrow \pi^+\pi^-$ channel is the major source of uncertainty in $a_{\mu}^{\rm HVP}$

UNIVERSITY OF

IVERPOOL

Muon g - 2 **Puzzle** Chaotics in $e^+e^- \rightarrow \pi^+\pi^-$ for a^{HVP}_{μ}

• $e^+e^- \rightarrow \pi^+\pi^-$ channel is the major source of uncertainty in $a_{\mu}^{\rm HVP}$

• Another puzzle: measurement by CMD-3 (2023) was significantly higher!

More chaos from recent Lattice QCD updates

BMW/DMZ24 (2407.10913)

19

Muon g - 2 **Puzzle** Putting all together

	Current Situation
Experiments	 Storage ring measurements are consistent (BNL + FNAL)
SM predictions (HVP contribution)	 Lattice ⇔ e⁺e⁻ data-driven Within the data-driven: BABAR ⇔ KLOE CMD3 ⇔ all previous e⁺e⁻ data

Muon g - 2 **Puzzle** Putting all together

Dataset	Statistical Error [ppb]
Run 1	434
Run 2+3	201
Run 4+5+6	110 (est.)
All Run 1 to 6	90 (est.)

• For weighted e+ in the final ω_a fit, a factor 3.3 more data in Run-4/5/6 than Run-2/3 and 15.7 than Run-1.

· All using positive muons.

	Current Situation	Future Updates
Experiments	 Storage ring measurements are consistent (BNL + FNAL) 	 <u>Fermilab final result 2025</u> New approach at J-PARC
SM predictions (HVP contribution)	 Lattice ⇔ e⁺e⁻ data-driven Within the data-driven: BABAR ⇔ KLOE CMD3 ⇔ all previous e⁺e⁻ data 	 Scrutiny on CMD-3 within Theory Initiative Forthcoming mea./analyses: BaBar, KLOE, Lattice: more groups w/ precision similar to BMW MUonE

Proton beam (3 GeV) Kinetic energy Momentum Surface muon (3.4 MeV, 27 MeV/c) Thermal muon (25 meV, 2.3 keV/c) Reaccelerated muon (212 MeV, 300 MeV/c) MLF muon experimental facility H-line Thermal muonium production, Muon linac Ionization laser 3D spiral injection Muon storage magnet (3 T) Positron tracking detector

Muon g - 2 **Puzzle** Putting all together

	Current Situation	Future Updates
Experiments	 Storage ring measurements are consistent (BNL + FNAL) 	 Fermilab final result 2025 New approach at J-PARC
SM predictions (HVP contribution)	 Lattice ⇔ e⁺e⁻ data-driven Within the data-driven: BABAR ⇔ KLOE CMD3 ⇔ all previous e⁺e⁻ data 	 Scrutiny on CMD-3 within Theory Initiative Forthcoming mea./analyses: BaBar, KLOE, Lattice: more groups w/ precision similar to BMW MUonE

Proton beam (3 GeV) Kinetic energy Momentum Surface muon (3.4 MeV, 27 MeV/c) Thermal muon (25 meV, 2.3 keV/c) Reaccelerated muon (212 MeV, 300 MeV/c) MLF muon experimental facility H-line Thermal muonium production, Muon linac Ionization laser 3D spiral injection Muon storage magnet (3 T) Positron tracking detector

Muon g - 2 **Puzzle** Putting all together

	Current Situation	Future Updates
Experiments	 Storage ring measurements are consistent (BNL + FNAL) 	Fermilab final result 2025New approach at J-PARC
SM predictions (HVP contribution)	 Lattice ⇔ e⁺e⁻ data-driven Within the data-driven: BABAR ⇔ KLOE CMD3 ⇔ all previous e⁺e⁻ data 	 Scrutiny on CMD-3 within Theory Initiative Forthcoming mea./analyses: BaBar, KLOE, Lattice: more groups w/ precision similar to BMW MUonE

Muon g-2 theory initiative; Seventh workshop at KEK (Sep 9-13, 2024) <u>https://conference-indico.kek.jp/event/257/</u>

Proton beam (3 GeV) Kinetic energy Momentum Surface muon (3.4 MeV, 27 MeV/c) Thermal muon (25 meV, 2.3 keV/c) Reaccelerated muon (212 MeV, 300 MeV/c) MLF muon experimental facility H-line Thermal muonium production, Muon linac Ionization laser 3D spiral injection Muon storage magnet (3 T) Positron tracking detector

Muon g - 2 **Puzzle** Putting all together

	Current Situation	Future Updates
Experiments	 Storage ring measurements are consistent (BNL + FNAL) 	Fermilab final result 2025New approach at J-PARC
SM predictions (HVP contribution)	 Lattice ⇔ e⁺e⁻ data-driven Within the data-driven: BABAR ⇔ KLOE CMD3 ⇔ all previous e⁺e⁻ data 	 Scrutiny on CMD-3 within Theory Initiative Forthcoming mea./analyses: BaBar, KLOE, Lattice: more groups w/ precision similar to BMW MUonE

Muon g-2 theory initiative; Seventh workshop at KEK (Sep 9-13, 2024) <u>https://conference-indico.kek.jp/event/257/</u>

The Status of MUonE Experiment: Understanding Muon g - 2 Puzzle via $\mu - e$ Scattering

- Muon g 2 Puzzle
- ► The MUonE Experiment
 - Principle
 - Setups tracker, ECAL, beam, ...
 - Test Runs
- Outlook & Summary

A new approach measuring a_{μ}^{HVP} with running of $\Delta \alpha_{\text{had}}$

• The dispersive approach to compute $a_{\mu}^{\text{HVP,LO}}$ is via the time-like formula:

A new approach measuring a_{μ}^{HVP} with running of $\Delta \alpha_{\text{had}}$

• The dispersive approach to compute $a_{\mu}^{\text{HVP,LO}}$ is via the time-like formula:

$$\int_{\mu}^{T} \int_{\mu}^{\mu} a_{\mu}^{\text{Horos}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{m_{\pi}^{2}0}^{\infty} ds \frac{R_{\text{had}}(s)K(s)}{s^{2}}, K(s) = \int_{0}^{1} dx \frac{x^{2}(1-x)}{x^{2} + (1-x)(s/m_{\mu}^{2})}$$

• Alternatively, exchanging the x and s integrations \rightarrow space-like formula:

$$a_{\mu}^{\text{HVP}} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{\text{had}}[t(x)], \quad t(x) = \frac{x^{2} m_{\mu}^{2}}{x-1} < 0$$

$$\cdot \Delta \alpha_{\text{had}} \text{ is the hadronic contribution to the running } \alpha$$

Running of $\Delta \alpha_{had}$: 'Time-like' vs 'Space-like'

• The electromagnetic coupling constant runs as a function of the momentum transfer, due to vacuum polarization effects

$$\Delta \alpha(q^2) = \Delta \alpha_{\text{lep}}(q^2) + \Delta \alpha_{\text{had}}(q^2) + \Delta \alpha_{\text{top}}(q^2)$$

$$\alpha(q^2) = \frac{\alpha}{1 - \Delta \alpha(q^2)} \qquad \begin{array}{c} \alpha(0) \sim 1/137 \\ \alpha(M^2_z) \sim 1/127 \end{array}$$

Running of $\Delta \alpha_{had}$: 'Time-like' vs 'Space-like'

- The electromagnetic coupling constant runs as a function of the momentum transfer, due to vacuum polarization effects
 - Space-like: a very smooth behavior
 - Inclusive measurement

 Time-like: characterized by the opening of resonances

 $\Delta \alpha_{had}$ via Muon-electron scattering

• $\Delta \alpha_{had}[t(x)]$ can be extracted from the **shape** of the differential cross-section of **muon-electron scattering** $\mu^+e^- \rightarrow \mu^+e^-$

 $\Delta \alpha_{had}$ via Muon-electron scattering

• $\Delta \alpha_{had}[t(x)]$ can be extracted from the **shape** of the differential cross-section of **muon-electron scattering** $\mu^+ e^- \rightarrow \mu^+ e^-$

 $\Delta \alpha_{had}$ via Muon-electron scattering

• $\Delta \alpha_{had}[t(x)]$ can be extracted from the **shape** of the differential cross-section of **muon-electron scattering** $\mu^+ e^- \rightarrow \mu^+ e^-$

 $\Delta \alpha_{had}$ via Muon-electron scattering

• $\Delta \alpha_{had}[t(x)]$ can be extracted from the **shape** of the differential cross-section of muon-electron scattering $\mu^+e^- \rightarrow \mu^+e^-$

 $\Delta \alpha_{had}$ via Muon-electron scattering

• $\Delta \alpha_{had}[t(x)]$ can be extracted from the **shape** of the differential cross-section of muon-electron scattering $\mu^+e^- \rightarrow \mu^+e^-$

UQNE

 $\Delta \alpha_{had}$ via Muon-electron scattering

• $\Delta \alpha_{had}[t(x)]$ can be extracted from the **shape** of the differential cross-section of **muon-electron scattering** $\mu^+e^- \rightarrow \mu^+e^-$

Setup overview

MUonE Experiment

Setup overview

Apparatus

The tracking station

- Two (x, y) layers and (u, v) layer
 - (x, y) layers tilted for better resolution
 - (u, v) layer rotated to solve reconstruction ambiguities.
- Relative position between stations must be stable at 10 µm
 → a super precise experiment!
 - Low-CTE material (INVAR, carbon)
 - Well-controlled temperature
 - Laser system to monitor stability

Apparatus The tracker (CMS 2S Module)

- Silicon strip sensors currently in production for the CMS-Phase 2 upgrade (HL-LHC).
- Each module is divided in two independent halves.

A single half:

- 1016 strips
- 5 cm long
- Divided into 8 sectors
- Binary readout with a ~26 μm resolution

- <u>TDR CMS Phase 2 Tracker Upgrade</u>
- <u>I. Zoi, POS 448 (VERTEX2023), 021</u>

Apparatus The tracker DAQ system

https://serenity.web.cern.ch/serenity/

Apparatus The tracker DAQ system

- Triggerless readout @40MHz
- The CMS Serenity platform, with two FPGA daughtercards mounted
- Event aggregator on FPGA with online event filtering in 2025)

Apparatus Calorimeter

- A forward ECAL covering part of the total scattering acceptance
- Useful for PID & systematic study (an independent kinematic measurement)
- Considering recycling FNAL muon g-2 ECAL

5x5 PbWO4 crystals:

- Area: 2.85x2.85 cm²
- Length: 22 cm (~25 X0).
- Total area: ~14x14 cm².
- Readout: APD sensors.
- <u>Aram Hayrapetyan et al.</u>
 <u>Performance of the CMS</u>
 <u>Calo Crystals</u>

The Experiment Location Muon (M2) beam-line at CERN Prévessin site

ALICE >>

ATLAS

The Experiment Location Muon (M2) beam-line at CERN Prévessin site

ALICE >>

ATLAS

revessin

((LHC

The Experiment Location Muon (M2) beam-line at CERN Prévessin site

revessin

Joint test with CMS tracker group from 2021 to 2024

Oct - Nov 2021

- First test of the 2S module with tracker DAQ system
- Also confirmed thermal stability of the mechanical structure

July and Oct 2022

- 1 full station (6 modules) + ECAL in the proposed MUonE location
- Beam intensity and profile measured in the real beam conditions

Joint test with CMS tracker group from 2021 to 2024

Test Runs

Oct – Nov 2021

- First test of the 2S module with tracker DAQ system
- Also confirmed thermal stability of the mechanical structure

July and Oct 2022

- 1 full station (6 modules) + ECAL in the proposed MUonE location
- · Beam intensity and profile measured in the real beam conditions

Aug – Sep 2023

• First physics data taking to for the $\Delta \alpha_{lep}$ measurement

Sep – Oct 2024

Dedicated ECAL test and its synchronization with tracker DAQ system

2 stations (beam telescope + target + tracker) + ECAL

- Expected luminosity: ~ 1pb⁻¹
- ~10¹² μ accumulated on target with ~2.5×10⁸ elastic events with E_e > 1 GeV
- Goal: demonstration measurement of $\Delta \alpha^{\text{LEP}}$ with a few % precision

UQNE

2 stations (beam telescope + target + tracker) + ECAL

2 stations (beam telescope + target + tracker) + ECAL

Tracking system performance

• Module synchronization were checked computing the fraction of events normalized to the first module, if a hit is found in the the module under test.

 Determine the relative timing of the modules (i.e. ~0.1 ns for #2 and #3).

Best time offset ~10-15 ns

Tracking system performance

• Module efficiency and angular resolution were checked by selecting single-passing muon events for two stations separately.

Station 1

Target

Station 2

Analysis for Test Run 2023 Software framework

- NNLO Monte Carlo generator: <u>MESMER</u>
- <u>'MuE'</u> fast simulation
 - (θ_e, θ_μ) up to the **NNLO** generator as well
 - Limited detector effects (multiple scattering) included
- 'FairMUonE' dedicatedly developed for this project
 - Full detector effects and track reconstruction
- Event selection & weighted (θ_e, θ_μ) for template fits
- <u>'Combine'</u> tool for analysing systematic effects

Theory for muon-electron scattering @ 10 ppm

A report of the MUonE theory initiative

P. Banerjee¹, C. M. Carloni Calame², M. Chiesa³, S. Di Vita⁴, T. Engel^{1,5}, M. Fael⁶, S. Laporta^{7,8}, P. Mastrolia^{7,8}, G. Montagna^{2,9}, O. Nicrosini², G. Ossola¹⁰, M. Passera⁸, F. Piccinini², A. Primo⁵, J. Ronca¹¹, A. Signer^{1,5,a}, W. J. Torres Bobadilla¹¹, L. Trentadue^{12,13}, Y. Ulrich^{1,5}, G. Venanzoni¹⁴

First NNLO prediction! Eur. Phys. J. C (2020) 80:591

Analysis for Test Run 2023

Event reconstruction & selections

- Some basic criteria
 - Vertex position in the target
 - Track vertex fit quality (χ^2)
 - Acoplanarity
- Boosted kinematics:
 - Single detector to cover full acceptance
 - $\theta_{\mu} < 5 \text{ mrad}, \theta_{e} < 32 \text{ mrad}.$

Analysis for Test Run 2023

First elastic scattering results

- \rightarrow Making selections:
- Angles from the best vertex fit in FairMUonE
- 3 tracks (1 incoming & 2 out)
- Acoplanarity cut (<=1)
- Vertex reconstructed +/- 3 cm of the target mean position
- Angles: θ_{μ} > 0.2 mrad; θ_{e} < 32 mrad

Analysis for Test Run 2023

First elastic scattering results

Elastic Scattering Analysis Extraction of $a_{\mu}^{\text{HVP,LO}}$ from the template fit

- Extracting $\Delta \alpha_{had}(t)$ through **a template fit** to the (θ_e, θ_μ) distribution
- $\Delta \alpha_{\text{had}}$ parameterization (K, M): $\Delta \alpha_{\text{had}}(t) = KM \left\{ -\frac{5}{9} \frac{4}{3}\frac{M}{t} + \left(\frac{4}{3}\frac{M^2}{t^2} + \frac{M}{3t} \frac{1}{6}\right)\frac{2}{\sqrt{1 \frac{4M}{t}}} \ln \left| \frac{1 \sqrt{1 \frac{4M}{t}}}{1 + \sqrt{1 \frac{4M}{t}}} \right| \right\}$
 - 'Lepton-like' parameterization
 - K: related to α_0 and the electric charge of the lepton in the loop
 - M: related to the squared mass of the particle in the loop $(m_l^2, m_{\mu}^2, m_{\tau}^2)$
 - In the hadronic parameterization, K & M don't really have physical meaning

Elastic Scattering Analysis Extraction of $a_{\mu}^{\text{HVP,LO}}$ from the template fit

- Extracting $\Delta \alpha_{had}(t)$ through a template fit to the (θ_e , θ_u) distribution
- $\Delta \alpha_{\text{had}} \text{ parameterization (K, M): } \Delta \alpha_{\text{had}}(t) = KM \left\{ -\frac{5}{9} \frac{4}{3}\frac{M}{t} + \left(\frac{4}{3}\frac{M^2}{t^2} + \frac{M}{3t} \frac{1}{6}\right)\frac{2}{\sqrt{1 \frac{4M}{t}}} \ln \left| \frac{1 \sqrt{1 \frac{4M}{t}}}{1 + \sqrt{1 \frac{4M}{t}}} \right| \right\}$

4350

4300

4250

4200

4150

4100

(K - K)/o(K)

$$K_{\text{best}} M_{\text{best}}$$

$$a_{\mu}^{HLO} = \frac{\alpha_0}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{had}[t(x)]$$

Dominant behaviour in the MUonE kinematic region (x<0.936)

0.5 0.6 0.7 0.8

- The lepton like function that allows us to extrapolate the remaining 12%
- An alternative approach ('derivative') covering 99%:
 - Phys. Lett. B 848 (2024) 138344

19/11/2024

Systematic Effects Achievable accuracy

- The main challenge of the MUonE is the control of systematic effects at the same level of the statistical precision
 - 40 stations + 3 years of data-taking with full stations → 4E12 events
 - ~0.3% statistical accuracy on $a_{\mu}^{\text{HVP,LO}}$
 - Competitive with dispersive data-driven method
 - Estimated **10 ppm** systematic uncertainty
 - Requires a **uniform detection efficiency** (modules, across all angular range)
 - Precise **alignment** (10 μ m longitudinally)

• ...

Systematic Effects

General considerations & strategy

$$R_{\rm had} = \frac{d\sigma_{\rm data}(\Delta\alpha_{\rm had})}{d\sigma_{\rm MC}(\Delta\alpha_{\rm had}=0)} \sim 1 + 2\Delta\alpha_{\rm had}(t)$$

- Theory input: MC generator of radiative contributions at NNLO level
- Main experimental sources:
 - Multiple-scattering (accuracy of 1%)
 - Angular resolution (a few %)
 - Knowledge of the beam energy (a few MeV)

• . . .

Systematic Effects General considerations & strategy

- Main systematics have large effects in the normalization region.
- Large statistics but not sensitivity to Δa_{had}

Timeline

- An experimental proposal submitted to SPSC on May 2024
- The first physics run in 2025 before LHC Long Shutdown
 - 3 stations; 4 weeks data-taking; about 20% precision of $\Delta \alpha_{had}$
- Full run with 40 stations after LS3 with final goal ~0.3% stat and similar syst.

BMS

Goals:

Systematic error studies:

- Exploit data from all the sub-detectors to study backgrounds and systematics.
- Study uniformity of tracking efficiency, PID, backgrounds, detector modelization, beam control.
- Demonstrate control of the systematic errors at O(500ppm).

• Physics results:

- Preliminary measurement of $\Delta \alpha_{had}(t)$ with O(20%) statistical accuracy.
- Measure $\Delta \alpha_{lep}(t)$ with a few percent precision, and compare with the measurement currently being performed with 2023 data.

Run 2025

BMS (Beam Momentum Spectrometer)

The Collaboration

- 50+ people from over 9 countries
 - https://cds.cern.ch/record/2896293

Group	Senior	post-doc	PhD	students
Bologna	5		1	
Cornell University	1			
Imperial College(*)				
Krakow	2	1	2	
Milano-Bicocca	1			
Northwestern U.	1	1	1	
Padova	5	2		
Perugia	3	2		
Pisa	3	2	2	
Trieste	2		2	2
Shanghai	1	1		
Regis U.	1			3
U. of Virginia	2		2	
U. of Liverpool	5	3	3	
Total	28	13	14	5

In the UK:

- Imperial College (CMS tracker group): tracker module
- Liverpool: Analysis, BMS, theory, etc.

New collaborators are always welcome!

Conclusion

- Muon g 2 puzzles:
 - Conflict between Muon g 2 SM predictions and experimental measurement; HVP,LO
 - $a_{\mu}^{\text{HVP,LO}}$ represents a major uncertainty in the e⁺e⁻ data-driven method for SM prediction.
- MUonE: a new approach for $a_{\mu}^{\text{HVP,LO}}$ via μe scattering
 - A new, alternative, and independent way to measure $\Delta \alpha_{had}$ for the first time;
 - Main challenge: a very precise measurement on the shapes of differential distributions at the 10ppm level of systematic uncertainty;
 - Planning a 4 weeks of the data taking in 2025, making a preliminary measurement of Δα_{had}(t); A full run for 2029+ after LS3.

Backup

Elastic Scattering Analysis Extraction of $a_{\mu}^{HVP,LO}$ from the template fit

• Another approach computing $\Delta \alpha_{had}(t)$ using MUonE data

Phys. Lett. B 848 (2024) 138344

Elastic Scattering Analysis Extraction of $a_{\mu}^{\text{HVP,LO}}$ from the template fit

• Another approach computing $\Delta \alpha_{had}(t)$ using MUonE data

Phys. Lett. B 848 (2024) 138344

 $a_{\mu}^{\text{HLO (I)}} = -\frac{\alpha}{\pi} \sum_{i=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \bigg|_{t=0}$ 99% $a_{\mu}^{\text{HLO (II)}} = \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_0} \frac{ds}{s} c_0 s \left[\Pi_{had}(s) \right]_{\text{pQCD}}$ **1%** $a_{\mu}^{\text{HLO (III)}} = \frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] R(s)$ $a_{\mu}^{\text{HLO (IV)}} = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] R(s)$

MUonE

Time-like data

69

Tau Data

"... at the required precision to match the $e^+e^$ data, the present understanding of the IB [isospin breaking] corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals." - TI White Paper, 2020

A. Boccaletti et al, High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly, Figure 3 (arXiv:2407.10913).

- Historically data from hadronic tau decays used to supplement lacking or low accuracy cross section data.
- Poor understanding of the scale of systematic uncertainties associated with IB corrections meant these data was no longer to be included.
- More accurate calculations of IB corrections are in process, supplemented by lattice QCD and ChPT.
- DHMZ argue for the re-inclusion of τ data due to the existence of greater discrepancies among the cross section datasets.

19/11/2024

70

590

10 / 19

1

• Particularly on the ρ , CMD-3 2π significantly in excess of all previous data.

- A potential KLOE-CMD-3 systematic is too large for a_{μ}^{HVP} to be useable.
- Similarity at low energy used to motivate hybrid approaches...
- Belle-II see a similar excess on the 3π resonances but there are potential issues with the data.

DQC

8 / 19

Experimental Principle at J-PARC Muon Precession in the Magnetic Field

Experimental Principle at J-PARC Muon Precession in the Magnetic Field

Experimental Principle at J-PARC Muon Precession in the Magnetic Field

Experimental Principle at J-PARC Low-emittance muons needed

Experimental Principle at J-PARC Low-emittance muons needed

Experimental Principle at J-PARC Low-emittance muons needed

proton π ⁺ pion decay	μ ⁺ emittance ~1000π mm · mrad		
	Fermilab Muon g-2	J-PARC Muon g-2/EDM	
Focusing field	Electric quadrupole	E = 0, very weak magnetic	
Muon momentum	3.09 GeV/c	300 MeV/c	
Cyclotron period	149 ns	7.4 ns	
Muon orbit diameter	14 m	66 cm	
Storage Field	B = 1.45 T	B = 3 T (Solenoidal)	
Polarization	100%	50%	

Thermal Muon Source

Surface muon cooling by <u>laser ionization of muonium (Mu)</u> to thermal muon

Test Run 2023

Muon beam profile & intensity

• Silicon strip helps us 'see' the beam profile at the target position

$$\sigma_x = 1.34 \text{ cm}$$

 $\sigma_y = 0.68 \text{ cm}$

Confirmed the beam profile fits our detector dimensions

Test Run 2023

Muon beam profile & intensity

Silicon strip helps us 'see' the beam profile at the target position

Test run 2023

Muon (M2) beam-line at CERN Prévessin site

- CERN North Area M2: upstream of the COMPASS detector
 - Maximum 50 MHz (2-3×10⁸ μ +/spill) for 10¹² 400 GeV/c incident protons

Test run 2023

Module alignment, resolution and efficiency

- It is extremely challenging for MUonE to achieve precise alignment of less than 1 um transversely and ~10 μ m longitudinally for the modules and stations.
 - Hardware level: metrology measurements using laser survey
 - Software level: implemented with FairMUonE

Analysis for test run 2023

Event reconstruction & selections

- Some basic criteria
 - Track candidate quality (χ^2)
 - Vertex position in the target
 - Acoplanarity
- Kinematic considerations
 - $E_{\mu(\text{beam})}$, θ_{μ} , θ_{e} :
 - θ_{μ} : tune background of e⁺e⁻ pairs
 - θ_e : tune acceptance
 - $E_{\mu(\text{beam})}$ is in principle described by two angles
 - PID: muons can be distinguished from electrons using solely the angular information

Elastic Scattering Analysis 'FairMUonE'

- The package developed dedicated to MUonE
- Both simulation and track reconstruction in the same package
- Digitization of tracker & calo are implemented

Muon g-2 theory initiative; Seventh workshop at KEK (Sep 9-13, 2024) https://conference-indico.kek.jp/event/257/

Review slides by Martin Hoferichter

Towards the ultimate muon anomaly test

Slides by T. Mibe, inspired by K. Jungmann's slide

Precision comparison

J-PARC E34

	BNL-E821	Fermilab-E989	Our Experiment
Muon momentum	$3.09~{ m GeV}/c$		$300 { m ~MeV}/c$
Lorentz γ	29.3		3
Polarization	100%		50%
Storage field	B = 1.45 T		B = 3.0 T
Focusing field	Electric quadrupole		Very weak magnetic
Cyclotron period	149 ns		7.4 ns
Spin precession period	$4.37~\mu { m s}$		$2.11 \ \mu s$
Number of detected e^+	$5.0{ imes}10^9$	$1.6{ imes}10^{11}$	$5.7 imes 10^{11}$
Number of detected e^-	$3.6{ imes}10^9$	—	—
a_{μ} precision (stat.)	$460 \mathrm{~ppb}$	100 ppb	450 ppb (Phase-1
(syst.)	280 ppb	100 ppb	$<\!70 \text{ ppb}$
EDM precision (stat.)	$0.2 \times 10^{-19} \ e \cdot \mathrm{cm}$	—	$1.5 \times 10^{-21} \ e \cdot \mathrm{cm}$
(syst.)	$0.9 \times 10^{-19} \ e \cdot \mathrm{cm}$		$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$