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Photonics In Particle Physics

* “The technology of generating and harnessing light
and other forms of radiant energy whose quantum
unit is the photon” (from Photonics Spectra
magazine)

 |[n our context it is

* The detection of light generated by some process
related to the measurement of some property of
particles (e.g. Energy or velocity).

* The transmission and reception of analogue & digital
information connected with the electrical signals from
particle detectors.
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What systems are used in Particle Physics?

e Calorimeters (which measure energy and position)
* Scintillation light
* Cherenkov light

* Time-of-flight

* Fast scintillators used to determine the speed of a
particle

e Fibre Trackers

* Readout of electronics particularly in large
hermetic detectors. (I will not cover this aspect)

* Fibre backbone for Local and Wide Area Networks
(I will not cover this aspect)
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What devices are discussed in this lecture?

* Solid-state (silicon)
* Photodiodes (including avalanche)
e SiPM (“Geiger-mode” devices)
* Imaging SiIPM arrays
* Photomultipliers (external photoelectric effect)

* Devices for low magnetic fields (high gain)
* Devices for high magnetic fields (low gain)

* Hybrid devices

&

%Y Queen Mary

University of London

Science and Engineering



What devices are discussed in this lecture?

Photodetectors
Gas Vacuum
External photoeffect External photoeffect

TMAE [MWPC Avalanche gain Other gain process

TEA +4 GEM Process = Hybrid tubes

Csl Dynodes = PhotoMultiplier Tubes Silicon  Luminescent

anodes
Continuous dynode
—>Channeltron, MicroChannel Plate HPD SMART/Quasar
HAPD X-HPD
Multi-Anode devices G-APD-HPD
AIDAinnova 2nd Annual meeting Introduction to photodetectors and their applications in HEP 24-04-2023 Sune Jacobson
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The human eye (historic!)

* Detection of a particles by Geiger & Marsden (1909) using
ZnS(Ag) scintillator screens

* Visual detection of scintillation light
* Rate limited to about 60 s

* Each detected flash contained around 300 photons entering the
observer’s eye

 Last important visual experiment was the disintegration of
Li nuclei by protons (Cockcroft & Walton (1932))

e Used a human coincidence counter technique
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Noise In photodetection

 Fundamental noise (note dependence on the detection
bandwidth df)

e Shot noise from signal current and from “dark current”
o d{I*)spor=2elodf

 Thermal noise in a resistor (Johnson noise)
+ A1 enerm= 7 4KTdf
* d(V?)therm= R4kTdf

* Additional noise from statistical fluctuations in avalanche or
electron multiplier gain need to be considered for
photodetectors such as the avalanche photodiode (APD)
and photomultiplier.
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Junction photodetectors
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Junction photodetectors

* Equivalent electrical circuit:

e Capacitance is a function of
reverse bias (until full-
depletion)

e Thermal noise I’ arises from
the shunt resistance Rsh -
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IL : current generated by incident light (proportional to light level)
Vb : voltage across diode
Ip : diode current
Cj : junction capacitance
Rsh: shunt resistance
I" : shunt resistance current
Rs : series resistance
Vo : output voltage
Io : output current
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Absorption of Light

* In ideal (non scattering) materials the absorption of light is governed by
the Beer-Lambert law. This relates transmittance, T, to absorbance, A,
and optical depth z, by the fundamental relationship

T=e =104

If the attenuation coefficient 1 is given and the physical depth /, then

T =e M

For some actual values for real semiconductors see this site:
http://www.ioffe.ru/SVA/NSM/Semicond/
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http://www.ioffe.ru/SVA/NSM/Semicond/

Silicon photodiodes

* Silicon is the primary material since in general we are detecting fast scintillation or
Cherenkov light (UV and visible). SiC useful for a UV only response and for high
temperature operation.

* Silicon diode technology is well advanced and the peak quantum efficiency (QE) is
high (around 80%)

e Silicon devices are tolerant to quite high radiation levels, although there are problems
with hadrons.

* Silicon photodiodes are linear over many orders of magnitude.
* Small devices can have cut-off frequencies ~ 1 GHz

* Remember that they make good ionising radiation sensors too! This can be a problem
when you have a mixed light/ionising radiation environment.
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ldeal behaviour

Photocurrent is proportional to the optical (signal) power

How large is the responsivity R (in A/W) and how does it vary
with wavelength for an ideal photodetector?

In an ideal photodiode with unity gain (i.e. a pn or pin structure or a Schottky
device) one gets one e/h pair per absorbed photon with energy > band-gap.
This has the largest value when the photon energy is the smallest allowed, i.e.
just above the band gap. Numerically, for wavelengths in nm and band-gaps in

eV:

q 1 A[nm]
R = — R = ~
Eon EgleV] 1240
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Intrinsic silicon

Absorption Coefficient of Silicon
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Note that silicon is an indirect bandgap semiconductor so it has quite a
complicated absorption spectrum. Red lines are for 1 um and 100 um thickness.

M. A. Green and Keevers, M. J., “Optical properties of intrinsic silicon at 300 K”, Progress in Photovoltaics: Research

and Applications, vol. 3, pp. 189 - 192, 1995.

2. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients”, Solar

Energy Materials and Solar Cells, vol. 92, pp. 1305-1310, 2008.
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A commercial large area (10%x10 mm?) PIN diode

B Photo sensitivity linearity (S1227-1010BQ/-1010BR)

(Typ. Ta=25 “C) . (Typ. Ta=25 "C, A light source fully illuminated)
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Note 8 to 10 decades of

Data from Hamamatsu Photonics linear response
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Avalanche Photodiode (APD) — a diode
with gain

* A junction photodetector with VRO IR OTEC TR,
internal gain ’ |

* Uses impact ionisation that occurs
at very high internal electric fields.

* The avalanche process is an
additional source of noise (excess
noise factor F)

e Use the majority carrier to
minimise the excess noise
Generation of the excess electron-hole

+_n_m_nt ‘ ,
’ USE an n*-p-w-p” structure for pairs is due to impact ionization. Exggn?;?owf?,f) fnthe
silicon PRI
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Silicon “Reach-through” APD

Electric field

Avalanche
region
. Minimum field
i Depletion required for
regl impact ionization
\
R
p——— — — -1h —— 1#— —-'-'— —————
v \
Substrate \
. | » dE  p(x)
Silicon RAPD structure, electrons are the carriers multiplied here. —
dx €
Figure from http://www.tpub.com/neets/tm/111-4.htm
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A commercial large area (5%5 mm?) APD

(Typ. M=50 at 420 nm) (Typ. =420 nm)
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associated APD
readout.

Wavelength (nm)

Data from Hamamatsu Photonics

Reverse voltage (V)
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Silicon photomultiplier (SIPM)

Take an APD, increase the reverse bias to get a very high gain (Geiger mode) .

PROBLEM! The first photon detected will generate a huge avalanche in the high field region
which could be destructive.

SOLUTION: limit current with external quench resistor.

Clever idea: couple together lots of tiny APD (cells) in parallel to make a moderate area
device (several square millimetres), then can get an quantised output (up to ~ the number of
cells) which allows photon counting.

Geiger mode also produces a fast rise-time signal so get good timing information (Time-of-
Flight applications for example).
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SIPM — photon detection efficiency (PDE)

70 70
A=410nm PR A=525nm
60 —a* 60- e
e ‘:-l-ho‘f i
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é 40 é 4':] ".--" . - ropu——
w W e e ':--r -
o 30 o 30 .
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D - - # - HPK $13360-3050, 50um, 3x3mm? - -+ - HPK 513360-3050, 50um, 3x3mm?
10- oo Kptek PM3350 (WBAO), 50um, 3x3mm? 101 ¥ - - Ketek PM3350 (WBAQ), 50um, 3x3mm?
j --—4=- FBK NUV-HD, 40um, 4x4mm? # .=t = FBK NUV-HD, 40um, 4x4mm?
0 —++— Sensk FJ, 35um, 3x3mm?2 0 " —++— Sensl FJ, 35um, 3x3mm?2
0 2 4 6 a8 10 12 ] 2 4 4] 8 10 12
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Fig. 1 PDE as a function of SiPM bias overvoltage (difference of operating voltage to the SiPM breakdown
voltage) at 410 nm (left) and 525 nm (right) for SiPMs developed by different producers (HPK, Ketek, FBK and
SensL). The microcell size and S1PM active area are reported in the Legenda. The measurement uncertainty
of ~ 5% 1s not shown in the plot. Figure adapted from g, Phys. J. Plus (2022) 137:170

https://doi.org/10.1140/epjp/s13360-021-02159-4
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Number of detected photons (cps)

SIPM — linearity, timing
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108 |= — Ideal . "
107
A
106 /
% i
10°
" | 1l
. i
10°
i
102 Il
10° 104 10° 108 107 108

Number of incident photons (cps)

10°

Linearity for Hamamatsu
S12572-015C

&

W

X

Queen Mary

University of London
Science and Engineering

== 1 photon equivalent pulse output
| S14160-1310PS MicroFJ-30035, MicroFJ-40035, MicroFJ-60035

Vbr + 2.5V, 10 £2 Sense Resistor

11 (Typ. Ta=25 °C, Vr=Vop) 130
' 120
1.0
110
0.9 100
0.8 %
_ = 80
0.7 s
;_', En
v 0.6 \ § o @
2 05 \ '1;1 0 =
o =
<
E 0.4 40 8
03 o
20
0.2 \ o
0.1 N o
0 -0
0 10 20 30 40 50 60 70 80 90 100 k
Time (ns) Figure 5. Fast Output Pulse Shape
s (MicroFJ-30035, MicroFJ-40035, MicroFJ-60035

Vbr + 25V 10 Q Sense Resistor)

Pulse output for Fast pulse output

Hamamatsu for onsemi J-series
S14160-1310PS SIPM
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Transit-time spread
(TTS) of 28 ps for
the onsemi J-30035
SiPM.

IEEE TRANSACTIONS ON
NUCLEAR SCIENCE, 68
(2021) 2096



SIPM —radiation tolerance i

Characterisation of SiPM radiation hardness for

G"la.ﬂlalli‘ﬂJIII GFIDI'I'ITTEIUIEIE‘E
—
2
I

1025
application in hadron calorimeters at FAIR, CERN and ;
NICA 10_35_.. bl W il il
0 10° 10" _ 10” 10"
Degradation becomes evident at neutron fluences Fluence [n,g/cm’]
above 10! n/cm? even for the best devices studied
here. |
w -
E :
E 10°E
£
e A | AT B T B |
_ o @ 0 10° 10" _ 10%  10%
arXi1v:2001.10322v1 [physics.ins-det] 28 Jan 2020 Fluence [n, form]
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SIPM — imaging devices

Tracking detector using scintillating
fibres in LHCb

SPAD = “Single Photon Avalanche Diode”

3-4 fibres / mm.
Critical alignment!

= A chip for the detection of photons in optical fibers has been designed

= SPAD groups at arbitrary positions can be defined in software

» Chip has purely digital outputs (pulse — width coded):
« Event Time has a jitter of < 500 ps for small groups
* Few photons can be clearly distinguished
« Photon number of up to 30 are possible
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SIPM — imaging devices Dark Count Rate

(measured on different chip)

10°
CMOS SPAD Sensor Chip for the Readout e ___,@
. . . . 104 o agf
of Scintillating Fibers @RT
EEEsssss EEssssEsEsEEsEn 103 4 -]
‘, = = = ; § i e 102 -
H HHHH 4 E -
{ é bt E
| ‘ i £ 10'; 00 oD
R R { : ‘ ; <0.01 Hﬂmm
e i 8 100 @190 '
= ‘ ..... -.. - - v ‘ ™ M.A, 7 ‘: 10—1 E .
e ——— e e e - - . - S i . o —_ ;‘ s '
1072 1 2 039
Prof. Dr. Peter Fischer, Benedict Maisano, Robert Zimmermann '
-3
Institute for Computer Engineering (ZITl) and Physics Institute (Pl), e 100 125 150 175 200 225 250 275 300
Heidelberg University Temperature [K]

= Chip has purely digital outputs (pulse — width coded):
« Event Time has a jitter of < 500 ps for small groups
» Few photons can be clearly distinguished
* Photon number of up to 30 are possible

Reihe

25 64 103
Spalte
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SIPM summary

Pros:
High gain [ 10°to 107
Compactness [ 1t0 3 mm?
Insensitive to magnetic fields [ uptofewT
Low operation voltage [ 30-70V

cons:
Limited dynamical range [ Npx = O(1000) Thege_par_ametersOI

) : : e are being improve

C.ross talk, after-pulsing | 1 10% with the Tatest
High dark-rate | 0.1to few MHz devices
Temperature sensitivity | 20-50 mV/K
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Photodetectors — the photomultiplier tube (PMT)

* A free electron is liberated from a photocathode (photoelectric effect) into a vacuum
under an electric field
The free electron is accelerated to a few hundred volts and hits a dynode

Low energy (~ 1eV each ) secondary electrons are liberated from the dynode (4 to 10 depending on
electron energy and material of dynode)

Each secondary electron is accelerated and hits the next dynode
And so on ...

* A typical tube used in HEP has 10 to 14 dynodes
* Thus a high gain is achieved (10° to ~ 107)

* A very special amplifier, with a simultaneous high gain (~ 10°) and high bandwidth
(~1GHz).

 Large photosensitive areas (up to hundreds of cm?) are possible, but low QE compared
to silicon devices

 Most PMT are very sensitive to magnetic fields
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FOCUSING ELECTRODE

LAST DYNODE STEM PIN

°y
-r VACUUM ‘*é
—
—

.
ELECTRON MULTIPLIER
(DYNODES)

PHOTOCATHODE

Typical dynode gain is about 4 (for BeCu dynodes) and
a typical PMT has 10-12 dynodes. Current gain is
therefore Of Order 410 ~ 1000000' Michael Schmid / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)
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Fast large area PMT

Photocathode
Use electrostatic focussing to B )
minimise the time differences AT T ncreasingly postive
from a large photocathode AR R Equipotentials
focussing onto a small area
electron multiplier. Note use of
a variety of electrodes:This type
of PMT is very sensitive to
external magnetic fields.

____________

MRB265
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Galn and noise

G = gain "k Eha
l,,=anodedark  © | s
current (= noisel) |

104 - E11’\\—5' 1 nA

Vht(V)
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Spectral response, dynode gain, noise

35 10° 10°
bialkali 2
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- . o2,
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s 10 g : :
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0 0 ray
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wavelength nm Vit (V) 0.1 1 10 100 1000
photoelectrons equivalent

figure 9 Variation of first dynode gain, 6., with k-d ,voltage

k-

figure 4a Spectral response curves for various photocathodes
deposited on borosilicate glass. The naming of phofocathode

" ¥ FrE=Ta0 =T o~ F A T T
types is historical. Measured values of QE against wavelength can

be provided, at extra cost Plots from ET Enterprises Limited, Uxbridge, UK
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Photomultipliers for high magnetic fields

Fine mesh dynode approach — gains in thousands, fields up to ~ 1T
Fine mesh anode — gain ~ 10 but operating at fields up to at least 4T

40

Vacuum Phototriodes (VPT) t >‘
B-field orientation in end caps favourable for VPTs o755 mm |

(Tube axes 0°<|0|<40° with respect to field) |

Vacuum devices offer greater radiation hardness than Si diodes [‘
*Gain8-10atB=4T — = 4.5

* Q.E.~20% at 420 nm SEMITRANSPARENT  _| DYNOé:

- Insensitive to ionising particles pelece et MESH ANODE

* UV glass window - much less expensive than quartz and much
more radiation resistant than borosilicate glass

» Used in the current CMS endcap calorimeter at the LHC.
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Photomultipliers — VPT used in CMS

1.2 YT-49 Batch 30797a
r =D = 19.3 kGy dose

1.0 ! W‘\
2 0.8 | /ﬁm "\ 0.1
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~90 60 O T e @y e °0 00,2 400 500 600 700 800
12 2 D 1001 Wavelength (nm)
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e /,/ o | Only 8% loss of transparency in
T — o | the glass faceplate after 19 kGy

4 7 | . . .

, radiation dose (equivalent to 10

0 years operation at LHC)

0 200 400 600 800 1000
Dynode Voltage 100
. Violet box shows the extent of the

0

I PbWO, scintillation spectrum

Variation in gain*QE which peaks at 430 nm.
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Photomultipliers are still being improved
Ultra-compact PMT from Hamamatsu High QE photocathodes

B Micro PMT internal structure

TPMHBOB0GER
VACUUM TUBE 1000 ;
CONNECTION TERMINAL SECONDARY ELECTRONS GLASS 100 -i-YPE
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s T _
bt | ] / g
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AN E e S
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oFLGT J T\ . / / |t§:, == .:‘Ri)\Q\
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ELEGTRON MULTIPLIER (DYNODES) = > E etk e S 2%
PHOTSI?I;‘STI;)(I)D:MULTIPLIEH (DYNODES) \m PR GLASS E % 10 J"’ \“{‘\\
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w 9 '=t 11 \;H?GODU \\
wuw A kY
E A\ k
. . : =
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- D D
~ 1 ns, active area 3 mm? ot 2E
5 \ / wS
3 50
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o — -
= <
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o ~ SENSITIVITY o 1L
@ FWHM: 680 ps === QUANTUM EFFICIENCY .‘\\ '
1 0.0 | 1 | | 1
%00 300 400 500 600 700 800 900 1000

WAVELENGTH (nm)

TIME (2 ns/div.)
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Photomultipliers for many channels

Using proximity focus, and semi-transparent dynodes you can transfer, with
gain, the localised photon signal on the photocathode to an array of anodes.

Hamamatsu have also developed a very compact “metal channel dynode”
design that enables multi-anode capability. This is very useful for reading out
small area scintillating crystals used in PET scanners for medicine.

Figure 5: Positioning Histogram Example

TPVHETE4EA

B o W Bs 8w rowt
e #® 8 e % g8 X | 1P
||
TR L ”|||| |'||‘| H ||||
| | |
TR A T \u\' ' i J'H|'|'J|‘
TR s "'-“" Y
b > & &8 & 8 & 4 f:fio:;ngh|s10grampmﬁleforrowB(Ieﬂ:oqumnH
e & 5 & 8 8 8 3 | L
|
il ¢ i O Positioning histogram ‘| ||| |I| Il| ﬂ ||| “ I '
P @ a8 By & RS0 of a 10 x 10 array of | l ||I I |I| I ||| “ ||| |||
” - - B o - 8 ‘.‘ (PXG} 2mm 2 mm =20 mm |KJ|| || ||I || llJI ||| ||||
column 1 column 10 BGO elements for 511 keV b L "|
(PY8) (PY1) -rays.

1
Posmonlng histogram profile for column 5 (left: row 10)

Hamamatsu R8900 6x6 anode PMT. Gain ~ 700000 @ 1kV
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Micro Channel Plate (MCP)

» The Microchannel Plate MCP S
o o performance of the MCP:

. . . Window
single » High Gain: 1X104/ 1 pic [ by - .
electron Cathode ‘e_— e g - 1
T e » Small Size: Diameter=50mm = wcp. - Electrode ‘ Ww AV,
output . . . MCP - AV
electons > Fast Signal: Rise time < 1ns=  McP.,- Electrode ’
Atiofis— /

> TTS@SPE: ~30ps ;

a) front view of microchannel plate b) electron avalanche in a single channel

1) Using two sets of Microchannel plates (MCPs) to replace the dynode chain
2) Using transmission photocathode (front hemisphere)

= iewi |
and reflection photocathode (back hemisphere) 4w LAl angle'

1.Insulated trestle table
2.Anode

/ ‘f 3.MCP dodule

" " 4.Bracket of the cables 1'
5.Transmission Photocz
6.Glass shell
7.Reflection Photocatho

Built for LHAASO expt.
Concept for 41T detection!  eo—)

8.Glass joint

v Queen Mery Juian at TF-4 Community Meeting, 16/5/2023
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Hybrid photodetector

* Generate free photoelectrons in a vacuum (like a
photomultiplier tube)

* Accelerate photoelectrons to a high (10 to 20 kV) energy

e Use a silicon sensor as a particle (electron) detector. Get
approximately 2500 eh-pairs for each photoelectron accelerated
to 10 kV

* Large photocathode plus small area diode (low capacitance, thus
fast)

e Use a pixel detector (CMOS) to provide a position sensitive
photon counter.
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Hybrid photodetector

photocathode
Mumber of photoelecirons Si pixel array
0 : : ) ‘ s s ' ' s (1024 elements)
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Note the resolution of Used in the RICH of LHCb

1,2,3,... photons. <n>=5.4

C. Joram, CERN, Large Area Hybrid Photodiodes
6th International conference on advanced technology and particle physics, Como, Italy, October 5-9, 1998
See |hcb-doc.web.cern.ch/Ihcb-doc/presentations/conferencetalks/postscript/1998presentations/como.pdf
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Hybrid photodetector

a)
o R - Used today with APD for ultrafast single-
Proximity ° N S photon timing applications
focu Ssed Silicon detectar —1__ ¥ HT““ —
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Photocathode
/ Diode Bias
b) 7 Photoelectron 200 to 300 V
/
Avalanche Output

Diode ”

Photocathods —_

-5000 to -8,000 V

CrOSS Focusing electrades =7
focussed

Silicon detectar

C. Joram, CERN, Large Area Hybrid Photodiodes Beckler & Hickl device with 6 mm diameter

6th International conference on advanced technology and particle
physics, Como, Italy, October 5-9, 1998 photocathode
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Advantages and disadvantages of PMT

High gain and large electrical bandwidth, fast and high rate possible.
Large photocathode areas are available.
Insensitive to ionising radiation generating a signal (but Cherenkov in faceplate).
Very low dark count obtainable even at 293 K.

Very well understood technology.

Low noise at high(ish) temperatures (up to 200 °C for oil-well applications)

\ 4

Few manufacturers available (effectively two).
Low peak QE (~ 25%) compared to silicon devices (but improving).

Poor photocathode response in the red/near-IR Hamamatsu R12860,
: . : . : 508 mm diameter
Does not compete with Geiger mode diodes for multi-photon counting. PMT

Susceptible to gamma radiation induced darkening of faceplate (except quartz)
Sensitive to helium ingress — after-pulsing issues.

Handcrafted aspect for some tubes = £££

Uses high voltage (1 to 2 kV).
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