Advanced UK Instrumentation Training 2022

Lab Techniques - 1

Bart Hommels - Cavendish Laboratory hommels@hep.phy.cam.ac.uk

Preamble

- This session contains an overview of various "standard" measurements.
- It focuses on monolithic, planar Silicon, i.e. silicon detectors with conventional layouts and implants, to give you an idea on how to measure properties of the active medium.
- Techniques will vary (very) little for different types of devices (3D etc).
- For integrated detectors such as Active Pixel and/or CMOS devices, you will have to see how the measurements and techniques can be adapted to work with the particular device.
- I hope to give you an idea of how measurement techniques work to help you figure out how these can be applied to your project.

Contents

- Reverse bias leakage current (I-V)
- Leakage Current Stability
- Depletion depth / doping concentration (C-V)
- Inter-channel properties
 - Inter-channel resistance (Ris)
 - Inter-channel capacitance (Cis)

Contents - II

- Measurements on test structures
 - Flat-band voltage
 - Punch-through Protection
- Multi-channel characterization
 - Coupling Capacitance
 - Channel Test Protocols
- Advanced Imaging
- Measurement Equipment

|-V:

Current - Voltage measurement

Reverse Bias Leakage Current (I-V)

- · Reverse bias: depletion zone in at least part of the silicon volume
- · Leakage current: sum of bulk current and surface current

Reverse Bias Leakage Current (I-V): Bulk current

• **Bulk** leakage current: from (diffusion) recombination of e⁻ / h⁺ pairs generated in the depleted region:

$$I_{bulk} \propto W \propto \sqrt{V}$$

- Depends on depleted volume, dopant type and concentration, and above all, temperature
- · Comparing measurements requires T correction:

$$I(T_R) = I(T) \left(\frac{T_R}{T}\right)^2 \exp\left(-\frac{E_g}{2k_B} \left[\frac{1}{T_R} - \frac{1}{T}\right]\right),$$
 with Eg=1.12 eV for Si

Reverse Bias Leakage Current (I-V): Surface currents

- Surface Currents:
 - Dependent on impurities, process or radiation induced defects
 - · Edge structures: bias rail, guard rings, edge metal designs
 - O(10) difference in edge / bulk ratio for sample pieces vs. full size detectors
- Surface currents less T dependent than bulk current.
 - · Charge depositions at the surface or insulation layers
 - Interface effects between Si/SiO₂ interface at the top surface layers

Reverse Bias Leakage Current (I-V): Measurement

- Structure perimeter determines active volume, or volume 'seen' by the measurement
- Guard rings provide well defined outline
- Particularly important when measuring (parts of) test structures
- Connect guard ring to same potential as central region but keep it out of the current measurement
- Equipotential gap: no surface currents

Reverse Bias Leakage Current (I-V): Measurement

- Equivalent circuit: rather simple
 - Sensor modeled by reverse bias diode & capacitor
 - · Series resistor R to "extinguish" breakdown / avalanching. Order: 1 $\text{M}\Omega,$ depending on leakage current levels.
 - High side vs low side current measurement:
 - High side needs HV capable I meter
 - Low side more sensitive to grounding issues

Reverse Bias Leakage Current (I-V): Measurement

- The smaller the currents, the more important grounding and shielding becomes
 - Lower than O(10 nA) is where it gets tricky
 - O(10 pA) is very difficult but can be done
- Contact points on sensor: contact quality important for sensing low currents accurately
 - Bond wires
 - Probestation manipulators with tungsten tips
- Best practice: fully floating design with central GND point near DUT and grounded shielding
 - Not always practically possible
 - Avoid ground loops!

Reverse Bias Leakage Current (I-V): Typical results

Remember $I_{bulk} \propto \sqrt{V}$, plotting $log(I) \propto log(V)$ will reveal exponential compound contributions better

Typical result:

- A. Initial rapid rise towards full channel isolation
- B. Full depletion bump: saturating the (heavily doped) back implant bumps up the leakage current
- C. Onset of breakdown

This is a large, low leakage sensor: 1.1nA/cm² @ 1000V

Higher leakage currents can hide subtle features

Reverse Bias Leakage Current (I-V): Measurement details

- Temperature measurement the limiting factor to accurately normalise currents
 - Sensor self-heating: thermal runaway for high current sensors, such as irradiated samples
- Settling behaviour: define interval between applying the voltage and sampling the current
- Sensor history can play a role, in particular in sensors with extremely low leakage currents and intricate top surface isolation layers
 - Repeated measurements influence the steep ramp towards channel isolation

Reverse Bias Leakage Current (I-V): Measurement details

- In diced detectors, (multi) guard ring potential measurement gives insight in E field configuration
 - · Important to mitigate highest E field spots to avoid breakdown
 - Does the structure work as designed? Are there unforeseen breakdown issues?
 - Example: 1cm² sample detector 1nA @ 1000V ~ 1 T Ω
 - Measurement device needs input impedance much larger than this.
 - A good multimeter can do O(10 G Ω): not enough.
 - Electrometer: O(100 T Ω): Keithley 6517, for example.

Reverse Bias Leakage Current Stability

- · Longer term stress test of sensor top surface and/or edge structures
 - · Bulk leakage dependent on intrinsic properties, not influenced by dynamic behaviour
 - Variations in leakage current caused by surface effects:
 - Interactions between Si/SiO2 layers and other insulation layers at the top surface
 - High voltage gap, guard ring, bias rail design and implementation
 - The E field causes any charge at the top layers to move around.
 - Mobility depends strongly on T, and, potentially, (Relative) Humidity (RH)
 - Low I sensors with intricate top isolation layers more affected
 - · Edge structures where bias gaps appear can take a long time to settle

Reverse Bias Leakage Current Stability: measurement

- Requires independent HV supply and measurement instrument
 - · Direct current measurement, or
 - Voltage across shunt resistor
- Contact quality and stability must be excellent
- This measurement takes a long time: multiple sensors simultaneously
 - · Needs matrix (direct I) or multiplexer (shunt V).
 - Consider switch leakage, noise, controls and grounding
- · Current normalisation by temperature compensation.

 Requires T sensor coupled to similar thermal mass as sensors

Reverse Bias Leakage Current Stability: atypical results

- Stable leakage : good
- Quick fluctuations
- Rising current
- Combinations of the above

- Eyeballing the data is pretty straightforward
- Tricky to design algorithm that catches all

Reverse Bias Leakage Current Stability: atypical results & analysis example

- Top plot: various non-ideal behaviours
 - T compensated currents
- "Sawtooth" pattern correlates with dry cabinet letting in nitrogen: humidity sensitivity

Composite analysis: example

- Simple (running) avg/stdev will not catch all
- Use more advanced tools to try and catch all in a single "quality" parameter C_i:
 - · (Pearson) correlation coefficient
 - Spearman (monotonic function) correlation coefficient
 - Linear regression ("straight line fit")
 - Standard deviation

$$C_i = a_1 R_{Pearson} + a_2 R_{Spearman} + a_3 \beta + a_4 I_{var}$$

C-V: Capacitance - Voltage measurement

Depletion Depth - Doping Concentration (C-V)

• Definition of capacitance at given voltage V_0 and depletion depth w:

$$C(V_0) = \frac{dQ}{dV} \bigg|_{V=V_0} = \frac{dQ}{dw} \frac{dw}{dV} \bigg|_{V=V_0}$$

- With w depending on the effective doping concentration $N_{\it eff}$:

$$\frac{dw}{dV} = \sqrt{\frac{e\epsilon_r \epsilon_0}{2eN_{eff}V}}$$

- The above only applies when $V < V_{FD}$, or alternatively with $w < d_{\it eff}$, the distance less than the active thickness
- · Planar sensors can be reliably modelled by parallel plate capacitors

Capacitance - Voltage measurement

$$C(V) = \begin{cases} \sqrt{\frac{e\epsilon_r \epsilon_0 N_{eff}}{2V}} A, V < V_{FD} \\ \frac{e\epsilon_r \epsilon_0 A}{D}, V \ge V_{FD} \end{cases}$$

Plot $\frac{1}{C^2}$ for against V_{bias} for straight line

- With A the area enclosed by the bias rail, the effective depth D can be calculated for $V \geq V_{FD}$
- . For $V < V_{FD}$, $N_{e\!f\!f}$ can be determined, even for $N_{e\!f\!f}(w)$

Capacitance measurement: LCR meters

• Sensor capacitance is derived from determining complex impedance Z using an AC test voltage with frequency f:

$$Z = R + i \left(2\pi f L - \frac{1}{2\pi f C} \right)$$

 LCR meter: contains an auto balancing bridge to measure impedance of simple R/L/C networks

LCR meters: measurement principle

- · Insert AC waveform, measure relative amplitude and phase shift of response
- Extract complex impedance of known network: R-C series, R-C parallel, etc.
- LCR is most accurate when Z(R) and Z(C) are comparable: $R \sim 1/jwC$, and parasitic impedances are low
- R-C network formed by Rbias + Rbulk and Cbulk, L negligible
- · Practical implementation: DC-blocking C, LCR protection circuits

LCR / CV measurement limitations

- LCRs cannot be asked to perform the impossible
- Frequency dependence of R-C network formed by detector
 - C should correspond to parallel plate capacitor for planar sensors
 - R should be roughly all R_{bias} in parallel

7.9.2 C Accuracy

Typical results: V_{FD} , D, N_{eff}

- Plot shows results for single batch of sensors, of which 2 have a different active thickness
 - Linear slope for $V < V_{FD}$ implies a homogenous doping profile
- Methods for extracting V(FD):
 - Intersection of linear fit to the 2 regions
 - · Slope change: find peak on curve derivative

Effective doping concentration [x 10¹² cm⁻³]

C-V for irradiated sensors

- Where is VFD?
- Note the O(10⁵) higher leakage current:
 - V_{bias} needs correcting for drop across
 R_{series}
 - Avoid using top metal contact for HV, use backplane instead: irradiation potentially changes resistance of detector edges
- Note the very different behaviour vs f
 - Small operating window

Thank you!

Bart Hommels: hommels@hep.phy.cam.ac.uk

References

• C. Klein: Investigation of performance and the influence of environmental conditions on strip detectors for the ATLAS Inner Tracker Upgrade

https://doi.org/10.17863/CAM.45814

- J. Ong: Stability analysis of ATLAS ITk Sensors
- C. Sawyer: The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

https://indico.cern.ch/event/813597/contributions/3727954/

• E. Staats: Electrical Characterization of Silicon Strip Sensors for the ATLAS ITk at the HL-LHC with Extended Investigations of Sensor Properties

https://curve.carleton.ca/a5662611-f583-47eb-ace8-b98171e6c121