
FIELD PROGRAMMABLE
GATE ARRAYS

UK Advanced Instrumentation Course 2022

Andrew W. Rose, Imperial College London

awr01@imperial.ac.uk

mailto:awr01@imperial.ac.uk

RECALL FROM
TRIGGER & DAQ LECTURES

2

RECALL FROM
TRIGGER & DAQ LECTURES

So… I should probably justify those statements…

3

A NOTE ON TIMESCALES

• At 40MHz BX rate, a 4GHz CPU could

perform 100 CPU operations (not

enough to be useful) before having to

pass to the next core

• Compare that to the O(10M) detector

channels

• What technology can we use?

4

PROGRAMMABLE DEVICES

• Application-specific integrated circuits

(ASICs): optimised for fast processing,

design encoded into silicon

• “Programmable ASICS”:

Field-programmable gate arrays (FPGAs)

5

AN ASIDE: THE HISTORY OF ELECTRONICS

• Digital electronics really started with the advent of the thermionic valve
(colloquially, the “vacuum tube”)

6

THE HISTORY OF ELECTRONICS

Valve

transistors

7

THE HISTORY OF ELECTRONICS

Valve

transistors

First

solid-state

transistors

8

THE HISTORY OF ELECTRONICS

Valve

transistors

Solid-state

transistors

First

solid-state

transistors

9

THE HISTORY OF ELECTRONICS

First

multi-transistor

silicon

10

THE HISTORY OF ELECTRONICS

First

multi-transistor

silicon

Packaged

Logic

11

THE HISTORY OF ELECTRONICS

First

multi-transistor

silicon

Packaged

Logic

“Mini” processor

board

12

ASICS

Application Specific Integrated

Circuit (ASIC)

APV25 - Imperial

College, London

13

ASICS

Application Specific Integrated

Circuit (ASIC)

$

Qty

ASIC

APV25 - Imperial

College, London

14

ASICS

Application Specific Integrated

Circuit (ASIC)

$

Qty

ASIC

Off-the-shelf

device

APV25 - Imperial

College, London

15

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

16

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

SequentialParallel

17

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

SequentialParallel

A debate as old as

electronic computing itself

18

TWO PHILOSOPHIES: SPACE VS. TIME
Have each operation performed by

dedicated logic
and

do that same operation
on every clock cycle

Have each operation performed by
the same logic

performing
a different operation
on every clock cycle

“The parallel approach to computing does require that some original thinking be done

about numerical analysis and data management in order to secure efficient use.

In an environment which has represented the absence of the need to think as the

highest virtue, this is a decided disadvantage”

Daniel Slotnick, 1967

SequentialParallel

19

AND THE STORY DIVERGES…

Programmable Array Logic Microprocessor

Pack entire logic

circuits in a chip

Perform all logical operations in

one location, but sequentially

SequentialParallel

20

AND THE STORY DIVERGES…

Programmable Array Logic Microprocessor

Pack entire logic

circuits in a chip

Perform all logical operations in

one location, but sequentially

Limited further

discussion of

microprocessors

SequentialParallel

21

SUM-OF-PRODUCTS THEOREM

• Any Boolean operation may be expressed as

the OR of AND operations (Sum of products form)

• Or

the AND of OR operations (Product of sums form)

22

PROGRAMMABLE LOGIC DEVICES
(PLDS)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Unprogrammed

23

PROGRAMMABLE LOGIC DEVICES
(PLDS)

Programmed

24

PROGRAMMABLE LOGIC DEVICES
(PLDS)

• Originally one-time programmable

• Later field reprogrammable

• What did people do? Build boards with many PLDs…

25

COMPLEX PLDS (CPLDS)

26

PROGRAMMABLE INTERCONNECT MATRIX

27

AN ALTERNATIVE APPROACH

• Why bother with the complexity of the PLD cell?

• Replace the PLD cell with a simple SRAM:

• Data-in becomes the “address”

• Outputs the preloaded value for a given input

28

AN ALTERNATIVE APPROACH

• Why bother with the complexity of the PLD cell?

• Replace the PLD cell with a simple SRAM:

• Data-in becomes the “address”

• Outputs the preloaded value for a given input

The Field Programmable Gate Array

(FPGA)

29

FIELD PROGRAMMABLE GATE
ARRAYS (FPGAS)

• ‘Simple’ Programmable Logic
Blocks

• Massive Fabric of
Programmable Interconnects

30

EVOLUTION OF
FEATURES IN

FPGAS

31

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste all the LUTs as RAM?

32

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste all the LUTs for

multiplication?

Big chips need dedicated clocking!

33

EVOLUTION OF
FEATURES IN

FPGAS

34

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste LUTs AND re-invent

industry-standard blocks?

35

EVOLUTION OF
FEATURES IN

FPGAS

Who wants to waste LUTs AND re-invent

industry-standard blocks?

36

A NOTE ON I/O

• Traditionally, many hundreds of general purpose pins (Gen I/O) up to a few
hundred MHz

• Latest generation Gen I/O up to 1.8Gbps

• Programmable logic standards

• Since 2002, FPGAs have been adding dedicated Multi-gigabit transceivers

• Arms race - Ever more and ever faster

37

COMBINATORIAL
LOGIC BLOCK

38

COMBINATORIAL
LOGIC BLOCK

• Registers on the output of every cell

• Perfect for pipelined logic

39

INTEGRATED DIGITAL SIGNAL PROCESSING

40

INTEGRATED DIGITAL SIGNAL PROCESSING

• So many registers

• Perfect for pipelined logic

41

BIGGEST XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at up to 500MHz

• Up to O(1015) operations/second

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable

42

BIGGEST XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at up to 500MHz

• Up to O(1015) operations/second

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable 4.2 Tb/s!!!!

43

BIGGEST XILINX “ULTRASCALE+” DEVICES

• Upwards of 2million logic cells

• All clocked at up to 500MHz

• Up to O(1015) operations/second

• Upwards of 6000 DSPs

• All pipelined

• Fully programmable

• So what is the catch?

4.2 Tb/s!!!!

44

FPGAS: WHAT’S THE CATCH?

• Incredibly hard to program efficiently

• Thinking in a parallel, pipelined-fashion is exceptionally difficult

• A handful of real experts in CMS

• Efficient use depends on efficiently structured data

• The chip is just the start – needs to be attached to something

• You are also responsible for the infrastructure

45

HOW TO PRESERVE YOUR
SANITY USING FPGAS

• Keep your data-flow fully flow-forwards

• No iterations

• or at least

• Flatten your loops

46

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

47

PROTOTYPE
CMS

TRACKING
TRIGGER:
KALMAN

FILTER

48

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

The maths is a relatively simple part of a more complex whole

49

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter is iterative

50

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter must handle combinatorics

51

PROTOTYPE CMS TRACKING TRIGGER:
KALMAN FILTER

Kalman Filter data-flow is data-dependent

52

AN ASIDE ON HIGH-LEVEL SYNTHESIS

• Due to an arbitrary decision by DoE/DARPA/U.S. Govt, FPGA vendors moved
C->FPGA compilers from a curiosity to a top-priority

• Reinforced by push for heterogeneous, energy-efficient computing

• Flattens loops, deals with pipelining for you

• Very simple to get started

• “Hurrah, we can get our software people writing firmware”

• From practical experience

• We see very inefficient usage of resources

• Hard to understand “what the compiler has done”

• Requires many pre-processor directives to instruct code to do “what you want”

• So, how do you program massively parallelized devices efficiently?

53

HARDWARE DESCRIPTION LANGUAGES

• Need a language to describe hardware

• Novelly – called a “Hardware Description Language” (HDL)

• Also called FIRMWARE

• Two popular languages are VHDL , VERILOG

• Easy to start learning… Hard to master!

54

HARDWARE DESCRIPTION LANGUAGES

• Describe Logic as collection of Processes operating in Parallel

• Language Constructs for Synchronous Logic

• Compiler (Synthesis) Tools recognise certain code constructs and generates
appropriate logic

• Not all constructs can be implemented in FPGA!

55

architecture behavioural of test is

begin

process(x, y)

begin

-- compare to truth table

if ((x='1') and (y='1')) then

F <= '1’;

else

F <= '0’;

end if;

end process;

G <= x or y;

end behavioural;

library ieee;

use ieee.std_logic_1164.all;

entity test is

port(

x: in std_logic;

y: in std_logic;

F: out std_logic;

G: out std_logic);

end test;

Must write code with

understanding of how

it will be implemented.

EXAMPLE

• Can also enter code via schematic entry:

• Easier to navigate, but not vendor independent

• Will there ever be a standard graphical programming language?

56

HOW TO YOU KNOW IT WORKS?

• Simulate design extensively!

• Much quicker than debugging inside the FPGA

57

58

TESTBENCH SUITE“Event display”

59

TESTBENCH SUITEClock-by-clock summary

End-of-event summary

60

DESIGNING LOGIC WITH FPGAS

• High level Description of Logic Design (HDL)

• Synthesise into a Netlist

• Boolean Logic Representation

• Target FPGA Device

• Translate

• Mapping

• Routing

• Bit File for FPGA

61

CONFIGURING AN FPGA

• Millions of SRAM cells holding LUTs and Interconnect Routing

• Volatile Memory: Lose configuration when board power is turned off.

• Keep bit patterns describing the SRAM cells in non-Volatile Memory
e.g. PROM or memory card

• Configuration
takes ~ secs

SRAM

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell

62

IT DOESN’T WORK: HOW TO DEBUG

• Simulate, simulate & simulate again!

• Much quicker than debugging inside the FPGA

• Route out signal to periphery

• Few debug pins always handy

• Can connect UART for uC debug (StdIn/StdOut)

• Use chipscope

• Rebuild design with embedded logic analyser

• Can be a bit like quantum mechanics

• If you look (i.e. make a measurement) your code can behave differently

• Chipscope presence can affect the original design

63

FLOORPLAN OF FIRMWARE IN MP7
64

FLOORPLAN OF FIRMWARE IN MP7

C
o

m
m

u
n

ic
a

ti
o

n
D

A
Q

MGTs and DAQ buffers

MGTs and DAQ buffers

65

WHEN & WHY SHOULD I
(NOT) USE AN FPGA?

• FPGAs are expensive (high-end £10k-100k cf. £100)

• FPGAs are power-hungry

• Programming FPGAs is like designing logic circuits not like programming
sequential microcontrollers

• Large firmware build-times are tens of hours or days

• Floating-point ops and iterative algorithms awkward in FPGAs (That said, you
“control” the silicon, so, of course, it can be done)

• FPGAs best for high through-put, low- and/or fixed-latency operations

66

CONCLUSION

• FPGAs are intrinsically parallel

• Modern FPGAs are exceptionally powerful

• FPGAs are a monumental PAIN IN THE BACKSIDE to program

• Partly due to the clunky, verbose HDLs

• Mainly due to the difficulty of conceptualizing massively parallel logic and
pipelined logic

• Get them right and you can do magic

• Get them wrong and you unleashed a world of pain on yourself

67

THE FUTURE OF THE FPGA?

• Heterogenous computing on chip

• But is it suitable for our typical

applications in particle physics?

• Is it suitable for future applications?

• Hardware Triggers? Probably not –

designed as co-processor

• Accelerated HLTs? Maybe – but GPUs

more likely…

68

THANK YOU
Any questions?

69

UP AGAINST THE SPEED OF LIGHT…

• Wait for the signal to
propagate

• “Sea-of-logic” approach

• Limits clock speed

• Do less each clock-cycle

• Compensated for by much
higher clock speeds

70

