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Radiation damage
▪ Cumulative effects

‒ Accumulating during the whole lifetime of the experiment

‒ Due to the energy deposited by radiation in the electronics

‒ Leads to device degradation or even failure

‒ Two types:

o Ionisation → Total Ionising Dose (TID) = Measurement of the energy dose deposited by radiation in 

the material in the form of ionising radiation, typically measured in rad or Gray (100 rad = 1 Gray)

o Non-ionisation → Displacement or fluence, expressed in particles/cm2

▪ Single Event Effects (SEEs)

‒ Very localised event induced by a single particle

‒ Due to the energy deposited by one single particle in the electronic device

‒ Leads to failure, at any moment

‒ Two types:

o Single Event Upset (SEU) –Transient effect

o Single Effect Latch-up (SEL) –Catastrophic SEE, Permanent effect
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This lecture



Radiation damage – Total Ionising Dose (TID)
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Ionisation in SiO2

Creation of electron-hole pairs

Build-up of charge/defects

Device degradation

F. Faccio, Radiation effects in the electronics for CMS



Total Ionising Dose (TID) effects on MOS transistors 
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▪ TID mechanism = Hole trapping in oxides

M. Lee, doi.org/10.3390/Electronics10080887, 2021

Trapped holes → 
Threshold voltage shift, 
leakage current increase, 
fast formation, 
annealing

Interface states → 
Threshold voltage shift, 
transconductance, slow 
formation, no annealing 
below 400°C



TID effects – Trapped charge – nMOS transistors 
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Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

N-channel (nMOS)
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N-channel (nMOS)
“ON” (channel conducting)

Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

TID effects – Trapped charge – nMOS transistors 
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N-channel (nMOS)

Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

Radiation event

Creation of positive charge 
in the oxide region

TID effects – Trapped charge – nMOS transistors 
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N-channel (nMOS)

Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

TID effects – Trapped charge – nMOS transistors 
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N-channel (nMOS)

Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

TID effects – Trapped charge – nMOS transistors 
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N-channel (nMOS)

Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

TID effects – Trapped charge – nMOS transistors 
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N-channel (nMOS)

Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

TID effects – Trapped charge – nMOS transistors 
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N-channel (nMOS)

Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

The positive charge 
attracts more electrons, 
equivalent to applying a 

small VG > 0 V

TID effects – Trapped charge – nMOS transistors 
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Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

N-channel (nMOS)
still “ON” with VG

Leakage current ↑↑

TID effects – Trapped charge – nMOS transistors 
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Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

TID effects – Trapped charge – nMOS transistors 
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Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

P-channel (pMOS)
“OFF” even with VG

TID effects – Trapped charge – pMOS transistors 
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Texas Instruments training & videos, https://training.ti.com/total-ionizing-dose-effects-mosfets

TID effects – Trapped charge – pMOS transistors 



TID effects – Consequences – Threshold voltage shift
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▪ Threshold voltage shift = ΔVT = f(ΔVOX, ΔVIT)

‒ Due to charged trapped in the oxide, ΔVOX

o In an nMOS transistor, the trapped positive charge causes negative shifts of the threshold voltages

o The positive charge trapped in the oxide repels the holes in the channel = To re-create the same 

inversion condition the gate requires a less positive voltage

o For a pMOS transistor, it is the opposite

‒ Due to charged trapped in the interface, ΔVIT

o Threshold voltage shift due to increasing charged trapped at the interface region is a relatively slower 

phenomenon than the build-up of positive charge in the oxide. ΔVIT can be slower than ΔVOX.

‒ The threshold voltage shift for nMOS transistors as a function of the total dose can be negative at the 

beginning and become positive at a later time (rebound effect).
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L. Chen, Radiation tolerant design with 0.18-micron CMOS technology, PhD thesis

TID effects – Consequences – Threshold voltage shift



▪ Increase of leakage current
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TID effects – Consequences – Leakage current



▪ Increase of leakage current
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L. Chen, Radiation tolerant design with 0.18-micron CMOS technology, PhD thesis

Leakage current also appears 
between adjacent n-type 
diffusions

TID effects – Consequences – Leakage current



▪ Increase of leakage current
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TID effects – Consequences – Leakage current
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TID effects – Consequences – Leakage current



▪ Decrease of mobility and transconductance

‒ Due to increase of the interface traps (conduction in MOS transistors is due to carrier motion close to the 

SiO2-Si interface)

‒ Mobility trend as a function of the trap increase expressed as:
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L. Chen, Radiation tolerant design with 0.18-micron CMOS technology, PhD thesis

TID effects – Consequences – Mobility decrease



▪ Noise increase

‒ Increase in white noise (frequency independent)

‒ Increase in 1/f noise (flicker noise)

‒ Due to the increase of the concentration of the interface traps and the traps in the oxide near the interface
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L. Chen, Radiation tolerant design with 0.18-micron CMOS technology, PhD thesis

TID effects – Consequences – Noise increase



Can we mitigate (some of) these problems?
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TID effects – Solutions
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TID effects – Solutions
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TID effects – Solutions
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TID effects – Solutions
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▪ Enclosed Layout Transistors… Very nice, but…

‒ They tend to occupy more area than the conventional linear transistors, for the same (W/L)

‒ Not all (W/L) combinations are possible

‒ They do not exist in design libraries provided by foundries (usually)

‒ Not recognised by verification tools typically used to verify designs before submission for fabrication



Recipe to mitigate TID effects
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▪ Use a technology with a small technology node (e.g. 65 nm is better than 180 nm)

▪ Use Enclosed Layout Transistors

‒ For nMOS transistors only

‒ For critical transistors

o in the analogue readout electronics –yes!

o in the digital readout electronics, the designers need to evaluate if it is really necessary, benefits…

▪ Use as many guard rings as possible



Planar nMOS vs FinFET 
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M. Campbell & F. Faccio, Future ASIC technologies in HEP experiments



FinFETs
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FinFET processing technology 
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FinFET – Advantages / challenges 
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FinFET – Design
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Thank you for your attention
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