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General Point about accuracy
Most of the mathematics we do here is only loosely coupled to reality - even

sophisticated and careful commercial device simulations typically get actual measured
quantities wrong by factors of 2 or more. With the basic equations we show here you

will NOT get quantitatively accurate calculations for real devices

However, most of the behaviours (e.g. with Temperature, Field etc) will be roughly right.

So it is useful to know these things to start developing a "feel" for how a device
structure you look at will behave.

This is only the beginning - it takes a long time of looking at device structures and
thinking carefully about how the various implants and applied potentials are meant to

work to get a real intuition for what a device will actually do.



Before we begin - Semiconductor modelling
There are roughly 3 "levels" of semiconductor models:

Quantum Mechanical: work out some actual solution (or approximate solution) to

Schrodinger equation

Kinetic: Treat electrons as scattering semi-classical particles, with various

processes going on

fluid-dynamical: Treat electrons and holes as (compressible, charged) fluids that

move in response to applied fields

The fluid-dynamical models are accurate down to about ~500nm for the "Drift-

Diffusion" model. Thus, for most semiconductor detector applications, they are
adequate (at least in the pixel regions!). Trouble can happen at the times between

when an energetic particle arrives and excites the lattice, and when the distribution
settles down.
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(image from Computational
Electronics by Vasileska & Goodnick)

We will discuss (briefly!) the
Boltzmann Transport Equation, and

then concentrate on Drift-Diffusion
(whilst mentioning in passing

Hydrodynamic Equations)



The Boltzmann Equation
Recall, from last time, we have already given up on a fully quantum mechanical

approach. The semi-classical approach starts from the point of assuming that we can
validly talk about having single particle wavefunctions, which we can regard as having

classical-like dynamics.

We start by introducing the phase space distribution function of electrons, 

, which represents the probability of finding an electron at position , with momentum 

at time .

In the absence of applied fields or temperature gradients,  would be the Fermi-Dirac

distribution.

We then consider processes which can change the phase space distribution. We treat

the momentum and spatial axes of the phase space as separate (there goes
Heisenberg's uncertainty principle and any hope of including spin!)
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 - processes which depend on spatial variations in the distribution function

(e.g. mechanical crystal strain, temperature gradients, thermal diffusion).

 - responses to external force fields (i.e.  is the applied Lorentz force).

 - the net rate of scattering processes contributing to the phase space

density (interactions with the lattice, phonons).

 - particle number change via generation or recombination (e.g. optical

absorption, thermal generation).
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There are some approaches to device simulation etc that aim to directly solve

some version of the Boltzmann equation, perhaps including quantum mechanical
extensions. However, this is currently only possible for nano-scale devices (i.e. not

particle detectors!)

We can simplify the BTE substantially by using an approximation for the collision

functional. In principle there are very many scattering processes that need to be
included, but many are only separately relevant at small spatial, high field, or short

time scales. Each process can be calculated using Fermi's Golden Rule, and
included in a collision functional approximation.



(image above from Computational Electronics by Vasileska & Goodwin - an excellent
book to read!)



Relaxation Time Approximation

Assume that for all the scattering processes, no net scattering occurs in equilibrium.
Out of equilibrium, assume that the distribution function relaxes with a characteristic

timescale  back to the equilibrium distribution  when scattering occurs
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This is a 1st order differential equation in  which can be solved to give:

f(t) = f ​ +0 (f − f ​)e0
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All the physics of the scattering processes have to be approximated in . Quite a tall

order, but to be fair, we can allow it to be dependent on various things in indirect ways.
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The Drift-Diffusion Model

First, recall some semi-classical transport basics from last time. We regard the velocity

of the electron to be its group velocity, that is:

v = ​ ∇ ​E(k)
ℏ
1

k

The work  done by a force  in time  is . Equating this work to a

change in the energy of the electron then gives:

δW = ∇ ​E(k) ⋅k δk = ℏv ⋅ δk ∴ F = ℏ ​

∂t
∂k

One can stretch the analogy even further, take another derivative to get "acceleration"

and recover the  form of Newton's 2nd law. Care must be taken, though,

because the transport is diffusive (Field proportional to velocity not acceleration), so
"acceleration" is a misleading term. It is safest to never use the word "acceleration"
when discussing semi-classical electron transport

δW F δt δW = F ⋅ vδt

F = ma



We take moments in  of the BTE and integrate out the momentum dependence. To

fully understand each term in this, a more advanced source (e.g. Computational
Electronics or "Transport Equations for Semiconductors" by A. Jungel).

Starting with the 0th moment:

​ fdp =
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The integral in the LHS term is just the spatial part only distribution (we'll call it  for

electrons). We can move  inside the divergence on the RHS. And using fundamental
theorem of vector calculus, we can re-write the 2nd term on the RHS as well
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Since there is a finite number of particles, and a finite total momentum, the surface

integral on the RHS must vanish. All scattering processes preserve total particle

number, and thus the  term must also vanish. The integrand in the first term on

the RHS is the velocity multiplied by the spatial distribution, which we can define to be

the electron current,

J ​ ≡n q fv ⋅∫ dp

and so the above complicated equation simplifies to:

​ =
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which is a continuity equation for electrons. A similar procedure on holes (which have
opposite charge) yields:

​ =
∂t
∂p

− ​ ∇ ⋅
q

1
J ​ +p G

f − f ​0



Now (strap in) we take the 1st moment of the BTE. For electrons:

v ​dp =∫
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∇ ​ (v ⋅r ∫ v)fdp+F v ⋅∫ ∇ ​fdp−p ​v ⋅∫
τ
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First, note that the equilibrium distribution function  is even in , and so multiplied by

an odd function  and integrated, it must vanish. The same logic applies to the term on
the LHS. If we assume that the generation-recombination processes do not depend on

electron momentum, the same logic also applies to the last term. The first term on the
RHS is equivalent to taking an (unnormalised) r.m.s average of the velocity. So, we now

have:
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where the last step involved an integration by parts.
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Finally we can return to our old friend  to do more work:

0 = qτ v ∇n+⟨ 2⟩ ​ f∇ ​E(k)dk −
ℏ

qτF
∫ k

2 J ​n

and invoking the effective mass approximation, we end up with:

J ​ =n qτ v ∇n+⟨ 2⟩ ​ fdp
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The external force  just comes from the electric field due to the potential  (again

we're pretending magnetism doesn't exist for a while). If we also pretend (for a second)
that kinetic theory applied to these electrons, then we could invoke equipartition

theorem to say that , again pretending that effective mass actually is a

mass.
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We now have:

J ​ =n ​ ∇n−
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you may recall, that in the free electron model from last time, we defined a quantity

called mobility . If we squint a bit and pretend that's effective mass on the

bottom we would then have:

J ​ =n μ ​k ​T∇n−n b qμ ​n∇Vn

If we made the Boltzmann assumption earlier, we can now invoke the familiar Einstein-

Smoluchowski relations (i.e. that ). If we didn't, well, actually it turns out

this still works but the reason that it does needs a few dozen pages and a more careful

derivation (which you can find in Computational Electronics chapter 6). Anyway, we
now have:
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m
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All the equations, written out for electrons and holes, are:
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which, together, constitute what is known as the Drift Diffusion Model. When
combined with a bit more semiconductor statistics (we're getting to it now), this full

equation system is known as the van Roosbroeck system.



Drift Diffusion Model - Comments

Why bother going through all that hideous derivation from the BTE? Well, mainly

because whilst drift and diffusion are physically reasonable processes intuitively, it is
nice to see that they arise directly from a kinetic approach as the first approximation.

Do not underestimate the Drift Diffusion model's complexity. Though we have done
major approximations to obtain it, it is still equivalent to two sets of fully compressible

(though luckily non-turbulent) fluid dynamics, coupled by a generation / recombination
term.

Drift Diffusion model is an excellent intuition tool - at any scale where quantum effects
are not dominant, it gets things basically right, though quantitatively it will be wrong in

many ways, and miss out many subtle effects in real semiconductors.

This system (with some extensions, and not for nanoscale devices) is what the

commercial TCAD tools (Sentaurus, Silvaco) you will learn about in other lectures are
solving when doing device simulation.



Beyond Drift Diffusion - Hydrodynamic Model
One way to go beyond the Drift Diffusion model is to simply take more moments of the
BTE, and solve more coupled equations. This approach can never truly overcome the

limit of semi-classical dynamics (because the BTE itself is a fundamentally classical
kinetic formulation), though it can capture various dynamics and scattering processes

more accurately.

In particular, the DD model relies on there being only one single temperature

throughout the system. Higher order (so-called "hydrodynamic" or "energy balance")
models can remove this limitation, and are much better therefore at modelling

situations where the electron gas' temperature is different to the lattice's, (e.g. hot-
carrier injection in MOSFET channels), or when there is a temperature gradient across

the device.



Hydrodynamic Model derivation

Just kidding, we won't be doing this. See Computational Electronics, chapter 5.

The idea is basically this:


define a quantity  that is proportional to various powers of  (proportional with

arbitrary constants at each power, because we want  to represent e.g. carrier density,

current density, etc etc). The 0th and 1st  give us something that reduces to DD

model, but if we left out some of the assumptions on collision functional etc, we would
have:
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where  is the so-called "energy density tensor".
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The 2nd moment would give us:

​ =
∂t

∂W
−∇ ⋅ F ​ +W E ⋅ J − ​ (W −⟨

τ ​E

1
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which has introduced another quantity called the "energy flux" . Each balance
equation introduces another, ever more esoteric term. At some point we choose an

approximation for the collision functional and thus the  terms, and this will determine

to which level of energy balance equation we will solve. Solving an infinite number of

balance equations, would be equivalent to solving the BTE directly. In practice, it
seems, most commercial simulators don't go beyond Energy Flux (3rd moment). At this

point, the simulation is accurate enough until you hit the quantum level where totally
different approaches are needed.
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Semiconductor Physics - Thermodynamics
In the simplest case, we can use the parabolic band approximation for density of states

(from last time). So, we have the density of states in the conduction band (with

conduction band edge ):

g ​(E) =c ​ ​

π ℏ2 3

​(m ​k ​T )2 e,dos
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B
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and effective density of states in the valence band (with valence band edge ):
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The Fermi-Dirac occupation function is given by (where  is the Fermi energy):
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Boltzmann Approximation

Yep, more stuff confusingly called "Boltzmann". Anyway, hopefully you have seen

before that, at high temperatures (typically we say temperatures such that 

 :

f(E) = ​ ≈
1 + e

​

k ​Tb

E−E ​f

1
e

− ​

k ​Tb

E−E ​f

Note the following derivations don't actually properly rely on this approximation. Unlike

other approximations we have taken, you can form the full Drift Diffusion model without
doing this (and it has some improvement in accuracy for so-called "hot carrier" and high

applied bias situations). The solutions end up being not closed-form but in terms of the
Fermi-Dirac integral, though, and the formulae are a bit more complicated. For full

details, see e.g. Sze pp. 17-21
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Carrier Density

First thing to work out is the carrier densities  for electrons and  for holes. We use

the convention of a bar above a quantity meaning that quantity divided by , i.e. 

. The carrier densities are given simply by:
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The integrals turn out to equate to constants - they are the form of the Gamma function
(under the Boltzmann approximation, anyway), and we end up with the important

equations for carrier densities:

n = N ​(T )ec
−( ​− ​)E ​c̄ E ​f̄

p = N ​(T )ev
−( ​− ​)E ​f̄ E ​v̄

where  and  are called the "effective density of states" and depend on

Temperature. They may be semi-empirical or use the full parabolic approximation

The above expressions are important because most of the following results are derived
from simple manipulation of them.

Note that we had to assume a simplistic (parabolic) form of the density of states to get
this to work. In part, this is why we hold on to the parabolic band & effective mass

approximations so much!

N ​c N ​v



Intrinsic Density

The above definitions imply that the product  is given by:

np = N ​N ​e ≡c v
​− ​E ​v̄ E ​c̄ N ​N ​e =c v

− ​E ​ḡ n ​; ∴i
2 n ​ =i ​eN ​N ​c v

− ​2
​E ​ḡ

with  the band gap. We call the quantity  the intrinsic concentration or intrinsic
density, and it allows us to write new equations for  and  that are more often used

(because this quantity  is relatively easy to actually measure).

n = n ​e ; p =i
​− ​E ​f̄ E ​ī n ​ei

​− ​E ​ī E ​f̄

where  is called the intrinsic Fermi Level, i.e. the Fermi level of an intrinsic

semiconductor (which just means without any doping - see later)
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We can solve the above equation for the location of the Fermi Level:

E ​ =f E ​ =i ​ +
2

E ​ + E ​c v
​ ln ​

2
k ​Tb

N ​c

N ​v

The Fermi level therefore moves (pretty slowly) with temperature. Slowly enough that
you can't really make an insulator into a semiconductor without it melting. But fast

enough that this contributes a large part of the variation in carrier concentrations with
temperature. The band gap itself also varies (again, slowly) with temperature (a

reasonably good model is the Varshni Equation).



Law of Mass Action

The kinetics of electrons & holes are simple. Whenever we create an electron, we also

create a hole! Thus, for an intrinsic piece of material, we must have

n = p = ni

An alternative expression for the Fermi level is:

E ​ =F E ​ +i k ​T ln ​b
n ​i

n



Quasi-Fermi Levels ("Imrefs")
Everything we have talked about up to now in terms of thermodynamics assumed

equilibrium (meaning, no applied external field). Imagine if there is such a field, that can
impart energy to electrons and holes.

Thinking in terms of our drift-diffusion model, electrons and holes can thermalise very
rapidly (meaning, the energy distribution function within a band can return to something

that looks like equilibrium within a few scattering times (i.e. picoseconds). The bands
can only "talk to each other" via generation and recombination processes, and these

take on the order of the carrier lifetime, which is between nanoseconds & milliseconds
in most devices.

Even when the system is quite far from equilibrium, because of this mismatch in
timescales, there can exist a quasi thermal equilibrium state for electrons and holes

separately. So, even though we cannot define a single Fermi level for the system out
of equilibrium, we can define Quasi Fermi Levels (also known as "Imrefs").



We can adapt our previous relations for  and  to include QFLs very simply. Suppose

we're applying a voltage  which therefore imparts energy  to all the carriers. By

definition, we no longer have a Fermi level (which is an equilibrium concept), but if the

energy change is not too large, we can assume a similar distribution for electrons and
holes separately.

n = n ​e ; p =i
q − ​− ​V̄ qϕ ​n

ˉ Ēi n ​ei
​+ ​−qĒi qϕ ​p

ˉ V̄

 and  are the QFLs for electrons and holes, respectively.

The new "law of mass action" is:

np = n ​ei
2 q ​ ​−q ​ ​ϕ̄p ϕ̄n

so we can see that if  we recover the original situation. It is often

convenient to choose the zero reference energy level to be , and then the above

become even simpler.
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V qV
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Doping
When we add dopant to the

semiconductor, we are (conceptually)
adding impurity levels in the band

gap either near the conduction (for n-
type) or valence (for p-type) bands.

The semiconductor is now called
"extrinsic". In equilibrium, we can

solve for the concentrations by
adding the condition of charge

neutrality, that is:

p + N ​ −D
+ n− N ​ =A

− 0



going back to our (equilibrium) equations for  and , we find for the extrinsic case

(and assuming all donors and acceptors are ionised for now):

n = ​ +
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2
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2
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The above expressions are rarely used, because in practice we usually have much

more of one type of dopant than the other present. For n-type we usually have 

, which leads to:

n = N ​ −D N ​; p =A ​

n

n ​i
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if we additionally have that  then the expressions are even simpler:

n = N ​; p =D ​

N ​D

n ​i
2

vice versa for . Note that in an extrinsic situation the carrier with the high

concentration is called (unsurprisingly) the majority carrier and the other the minority
carrier. Importantly, (including in particle physics detectors) it is very often the minority
carriers we care about.

N ​ ≫D N ​A

N ​ ≫A N ​D



Carrier Freeze out
At low temperatures, there can be insufficient energy to ionize all the dopants (referred

to as "carrier freeze out"). At high temperatures, the intrinsic density  increases, and

eventually will become higher than the extrinsic (dopant induced) concentrations.

Below plot from "Modern Semiconductor Devices for Integrated Circuits" by Chenming
Hu.


n ​i



The Non-Linear Poisson Equation
Recall that in the drift diffusion model, we had the potential  and the carrier densities 

 and  included. But, also, above we showed that the influence of an external

potential was to modify the carrier distribution functions. Poisson's equation must (as
always) be satisfied:

ϵ ​∇ ⋅0 (ϵ∇V ) = −q(p − n+ N ​ −D
+ N ​)A

−

where  and  are donor and acceptor densities, respectively.

substituting in the thermodynamic definitions of the densities (and referencing all

energies relative to ), we find:

ϵ ​∇ ⋅0 (ϵ∇V ) = −qn ​(e −i
−q + ​ ​V̄ ϕ̄p e ) +q − ​ ​V̄ ϕ̄n q(N ​ −D

+ N ​)A
−

(note the  on the LHS and the  terms on the RHS, this is a powerfully nasty

non-linear equation now!)
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The above is called the Non-Linear Poisson Equation (of course "Linear Poisson
equation with non-linear source term" would be more accurate). It is the penultimate

piece of the van-Roosbroeck system puzzle. The final piece comes from checking what

happens when we substitute the thermodynamic definition of  into the DD current

equation. First note that:

∇n = ​ (∇V −
k ​Tb

q
∇ϕ ​)nn

and then we get:

J ​ =n −qμ ​n∇V +n qD ​ (∇V −n
k ​Tb

q
∇ϕ ​)nn

invoking the Einstein relation again , we have:

J ​ =n −qμ ​n∇V +n qμ ​(∇V −n ∇ϕ ​)n =n −qμ ​n∇ϕ ​n n

a similar relation applies to holes. In other words, the currents are given by the QFLs in

the DD model.

n

μk ​T =b Dq



So, finally, how to solve a semiconductor problem (one way):

1. solve the NLPE in equilibrium (where  ) to get a self-consistent

potential . In equilibrium this also tells you  and . No need to solve continuity

as no net current flows in equilibrium

2. Apply some small bias, solve NLPE again to get a potential . This potential will

no longer be consistent with the continuity equations. So, solve the continuity

equations to get  and  (or equivalently, to get  and ). As a by-product, you

will learn  and . Keep solving until these two sets of equations are consistent

3. Apply some more bias, repeat step 2, and keep applying more bias until you reach

the desired conditions

The above is called Gummel's Method, and it is still a common flow in modern device

simulation (though others are available).
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Generation &
Recombination
Having thrown away most of

quantum mechanics and complicated
scattering processes to get the DD

model, we need to re-inject some
physical reality to get good matches

to real behaviour. One place we do
this is in the generation &

recombination terms. There are
many possible effects to include (see

left from Computational Electronics).



Most important (for detector physics!!) are: photogeneration, thermal generation, SRH

G/R, impact ionization. (Note that the processes responsible for generating primaries
from high energy particles e.g. Bragg scattering, compton scattering, pair production

are not included here!).

Most unintuitive is that direct band to band recombination is very slow in silicon,

because it requires phonon interactions to account for the crystal momentum
conservation.

Intuition about Recombination - electrons & holes must be in the same place
(spatially) to recombine. Therefore expect most recombination mechanisms rate to

depend on product . In thermal equilibrium, there is no net recombination, and in

thermal equilibrium, , therefore the recombination rate:

u ∝ np − n ​i
2

This is true for SRH, thermal generation, Auger, etc etc.

np

np = n ​i
2



SRH generation / recombination
Most important recombination mechanism in Silicon. "Trap" levels (arising due to

impurities or radiation damage) capture/emit electrons or holes, and then later
capture/emit the other species. The phonon accounting is much easier than direct

recombination / generation because the trap level can "hold on" to the electron for quite
a while. These trap levels are typically "deep" (i.e. near the middle of the band gap, not

like impurity levels for doping)



Diffusivity & Mobility
Perhaps the most important extension to DD model to get some realistic results is

allowing the mobility (and diffusivity) to depend on other quantities, in particular the
applied Field. What is observed is that electrons exhibit "velocity saturation" in

semiconductors. After they reach a certain velocity, it becomes harder and harder to get
faster. This is due to a combination of band structure effects and energy loss

mechanisms like phonons and (in the extreme case) impact ionisation. There are
literally hundreds of different empirical and theoretical mobility models around, but the

simplest reasonably good one is probably the Caughey-Thomas formula using the
Canaali measurements:

μ ​ =i ​

1 + ​( (
v ​sat

μ ​∣E∣i,0 )
β ​i

)
​β ​i

1
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Mobility in Silicon (solid lines are electrons, dashed lines are holes)



Resistivity
Recall from last time that we could relate conductivity (via Drude model) to carrier
density:

σ = nqμ ​ +n pqμ ​p

Thus, conductivity (more commonly, resistivity) is a useful quantity to measure in
semiconductors. It is not quite the same conceptually as the resistivity of a metal

(where you can't alter  much by applying voltages!).

As you'll hear in other lectures, high resistivity is crucial to many modern particle (&

astro) detector devices, because it allows us to obtain maximum depletion for minimum
applied bias & thus leakage current. The resistivity of the wafer depends critically on

manufacturing processes (see other lectures).

n





Physics of the PN Junction
Finally! We can discuss what happens when we put together two differently doped

semiconductor regions:

The important thing to realise is that the Fermi level will equilibrate accross the device...



The carriers flow as shown above, and meet at the centre of the junction, where

recombination happens. This recombination serves to create a region of unscreened
dopants (called a "depletion region"). When the junction is put in reverse bias, the size

of this region increases. The following slides show a simple 1D simulation of solving the

DD model that I put together for a reverse biased pn junction with 

. They include basic SRH recombination and Klaassen mobility model.
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Depletion Layer Approximation

It is possible using a little extra simplification to calculate an approximate analytical
solution to Poisson's equation which gives the width of the depletion region and the

built in potential (which is useful for a lot of things in particular IV measurements). We
don't have time to go into full details but basically the potentials are quadratic and the

depletion width  is given by:
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Breakdown - Zener Effect & Avalanche
A thing you will become intimately familiar with if you test or operate any silicon
detectors is breakdown. That is, when you reverse bias a pn junction too far and it

eventually starts conducting. There are two mechanisms:

1. Zener breakdown - in heavily doped & narrow depletion regions, what is happening

is the field inside junction has become high enough to enable some electrons to
quantum mechanically tunnel through the potential barrier. This is called the Zener

effect.

2. Avalanche breakdown - in wider, lower doped regions, a random thermal

fluctuation or optical generation may release a minority carrier into the depletion
region, which will accelerate due to the high field. If the region is wide enough and

it reaches a high enough velocity, it will have enough energy to cause impact
ionisation, releasing further carriers.



Physics of the MOS capacitor
The MOS capacitor is an incredibly important device building block for MOSFET

transistors and some detectors (e.g. CCDs).

The models we talked about earlier didn't really include insulating layer boundary
conditions, so I won't go into detail on simulation etc. It is important to understand the

four "operating regions" of the device, though. This diagram shows an n-channel MOS
capacitor.



1. accumulation - pretty useless for detectors and not shown in diagram above.
Applying a voltage less than the flatband voltage leads to the gate attracting holes.

Only a small difference below  is needed such that essentially all the potential

is dropped across the insulator, the majority holes "screening out" the potential

entirely from the semiconductor

2. flatband - setting the potential on the gate exactly right to have no free charges in

the device at all.

3. depletion - apply more voltage, majority carriers are pushed away from the gate,

forming a depletion region (similar to pn junction though mathematically slightly
different). This can be used to collect signal charges (e.g. like in a CCD or modern

CMOS camera).

4. inversion - the magic happens. The band gets bend so much at the insulator

interface that generation of minority carriers starts happening at the interface. This
is both how the channel is formed in a MOSFET, and how a CCD can keep

electrons buried in a packet below the surface so they don't recombine.
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Important Things we Missed Out
actual detailed physics of the generation & recombination processes. This is

especialy crucial e.g. when thinking about radiation damage. Hopefully another lecture
in this series covers it in more detail.

any consideration of frequency dependence particularly crucial in the MOS
capacitor system

The Klaassen model of mobility the most widely used and best "basic" mobility model

discretization and solution process of the DD model really just for enthusiasts but is

very interesting and helps to understand what the TCAD is actually doing (would need
several more hours though!)



Recommended Reading
Solid State Physics - Ashcroft & Mermin - absolutely comprehensive presentation of
solid state physics including band structure

Computational Electronics: Semiclassical and Quantum Device Modeling and
Simulation - Vasileska & Goodnick - the absolute best text to follow on how to model

& treat semiconductors

Physics of Semiconductor Devices - Simon Sze - reference text on operations of

various types of semiconductor devices

Understanding Semiconductor Devices - Sima Dimitrijev - alternative and

comprehensive presentation of semiconductor physics from a devices perspective

Transport Equations for Semiconductors - Ansgar Jungel - deep dive discussion

into Boltzmann transport and higher order semi-classical models



Thanks
Sorry these are rough, this is the first year we've run this and they are brand new
prepared lectures!

Any comments & questions greatly received:

daniel.weatherill@physics.ox.ac.uk

mailto:daniel.weatherill@physics.ox.ac.uk

