Axions in the Sky

Samuel J. Witte

Oxford Theoretical Studies of Particles and Strings Retreat March, 2024

THE ROYAL SOCIETY

Astrophysics as a laboratory

New particles in the sky: dark matter

Galaxy rotation curves

Merging galaxy clusters

~kpc (Today)

~*Mpc*

Samuel J. Witte (University of Oxford)

Large scale structure

Cosmic microwave background

~10 Gpc Characteristic ~100 Mpc (*370,000* yrs after big bang)

Dark matter candidates

Samuel J. Witte (University of Oxford)

80 orders of mag.

Dynamical disruption of small-scale structure

Dark matter candidates

Axions

How do we search for these particles and what can we learn from their detection?

Axions and the Standard Model

Axion detection in the lab: the haloscope

Can understand as broken translational invariance allows $k_a^{\mu} \simeq k_{\gamma}^{\mu} + \delta k^{i}$

Fundamental Limitations: Magnetic field strength, must re-tune cavity for each mass

Predicting the axion mass

•Assume QCD axion is dark matter (& high inflationary scale)

Cosmic strings network in the early Universe

Image credit: Bernabou et al (2023)

Grilla di Cortana, Hardy, Pardo Vega, Villadoro (2016), Ghorgetto, Hardy, Villadoro (2018, 2021), Bushmann et al (2022), Saikawa et al (2024), Beyer & Sarkar (2023)

Axion density field

Image credit: Ellis et al (2022)

See also Ghorghetto, Hardy, March-Russell, Song and West (2023) for related idea with dark photon

Samuel J. Witte (University of Oxford)

See e.g.: Pshirkov & Popov (2009), Hook et al. (2018), Safdi et al. (2018), Battye et al. (2019, 2021, 2023), **SJW** et al. (2021, 2022), Foster, **SJW** et al (2022), ... (See also **Hardy** & Song (2023) for dark photon)

See e.g.: Pshirkov & Popov (2009), Hook et al. (2018), Safdi et al. (2018), Battye et al. (2019, 2021, 2023), **SJW** et al. (2021, 2022), Foster, **SJW** et al (2022), ... (See also **Hardy** & Song (2023) for dark photon)

See e.g.: Pshirkov & Popov (2009), Hook et al. (2018), Safdi et al. (2018), Battye et al. (2019, 2021, 2023), **SJW** et al. (2021, 2022), Foster, **SJW** et al (2022), ...

Axions beyond dark matter

Prabhu 2021, Noordhuis, Prabhu, SJW, Cruz, Chen, Weniger (2022), Noordhuis, Prabhu, Weniger, **SJW** (2023), Caputo, SJW, Philippov, Jacobson (2023)

Approaches for lighter axions: superradiance

Zeldovich (1972) Press & Teukolsky (1972), Related to **Penrose** process (1971) Arvanitaki, Dimopoulos, Dubovsky. Kaloper, J. March-Russell (2010), Arvanitaki & Dubovsky (2011), Brito, Cardoso, Pani (2015)

Approaches for lighter axions: superradiance

Zeldovich (1972) Press & Teukolsky (1972), Related to **Penrose** process (1971) Arvanitaki, Dimopoulos, Dubovsky. Kaloper, **J. March-Russell** (2010),

Arvanitaki & Dubovsky (2011), Brito, Cardoso, Pani (2015)

Samuel J. Witte (University of Oxford)

 $\Omega' \ll \Omega$

Black hole superradiance

Black hole spin distributions

Gravitational waves from axion cloud

Samuel J. Witte (University of Oxford)

Image credit: Brito & Pani (2022)

Approaches for *even* lighter axions

Cosmic Birefringence

Tentative evidence in Planck data (*a*) ~ 3.6σ See e.g. Komatsu (2022), Eskilt & Komatsu (2022)

Light axions can rotate polarisation of CMB

$$m_a \lesssim 10^{-27} \,\mathrm{eV}$$

- Quintessence Carroll (1998)
- Axion string network

P. Agrawal, Hook, Huang (2020)

P. Agrawal, Hook, Huang, Marques-Tavares (2021)

Conclusions: so what can we learn?

- Strong CP problem?
- Dark Matter?

- What can a detection tell us about physics at high energies?
 - Axion detection can probe:
 - GUTs / structure of gauge symmetries
 - Existence of magnetic monopoles and heavy degrees of freedom

Multiple axions could hint toward stringy "axiverse"

See e.g.

P. Agrawal, Nee, M. Reig (2022) P. Agrawal & Platshorre (2023) Sokolov & Ringwald (2022, 2023) P. Agrawal, Hook, Huang (2020) P. Agrawal, Hook, Huang, Marques-Tavares (2021)

Arvanitaki, Dimopoulos, Dubovsky. Kaloper, J. March-Russell (2010)

