

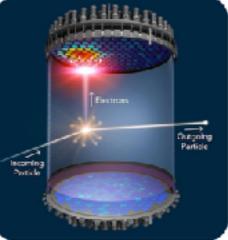
DRD2: The UK perspective

Roxanne Guenette Jocelyn Monroe Ruben Saakyan Paul Scovell

30 October 2023

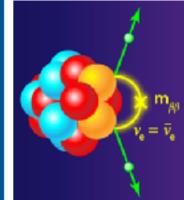
The Science covered

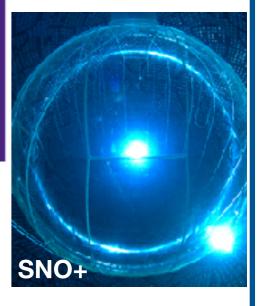
Neutrinos

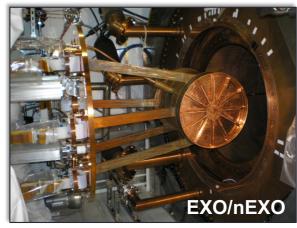

- Oscillation precision measurements (δ_{CP}, mass ordering, θ₂₃ octant, sterile vs)
- Neutrino interactions
 (from CEvNS to DIS)
- Astro neutrinos

μBooNE

Dark Matter


• Direct detection (WIMPs, ...)





<u>Ονββ</u>

 Search for Majorana neutrinos

The Physics Needs (high level overview)

Neutrinos

 Push Energy thresholds down to
 ~1MeV to enhance
 oscillation physics,
 supernovae vs study,
 to enable solar vs ...

· Unambiguous readout

Scalability

Dark Matter

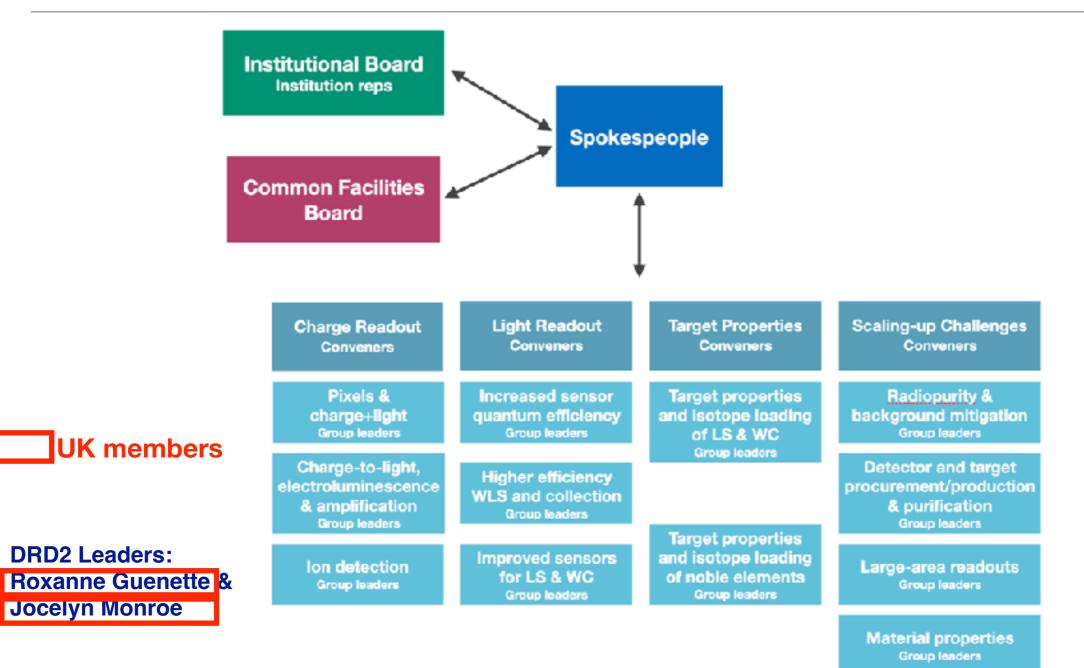
 Push Energy thresholds down to 1 meV/10 eV/1 keV to enable low mass DM/1 GeV DM/ WIMPs.

Reduce background rates

Scalability

<u>Ονββ</u>

 Improve Energy Resolution to sub-% FWHM


Reduce
 background rates

Scalability

Future targeted *projects* (UK)

<u>Liquid Nobles</u> (Argon/Xenon)	Liquid Scintillator	Water Cherenkov
 Dark Matter (Xe): XLZD (Few R&D needs from inputs) Dark Matter (Ar): Argo 	• LS 0vββ: SN0+ high Te doping	• HyperK (Few R&D needs from inputs)
• Neutrinos: DUNE LAr 3 rd /4 th modules	• Opaque LS: LiquidO	
Future Kilotonne-scale Xenon detectors: https://indico.slac.stanford.edu/event/8015		

DRD2 Collaboration

Charge Readout:

1.1 Jonathan Asaadi & Elena Gramellini

1.2 : Alexander Deisting & Kostas Mavrokoridis

Light readout:

- 2.1 Jocelyn Monroe & Fabrice Retiere
- 2.2 Marcin Kuzniak, Justo Martin-Albo, Clara Cuesta
- 2.3 Mathieu Bongrand & Tobias Lachenmaier

Target Properties:

3.2: Davide Franco , Marie-Cecile Piro, Andrea Zani, Andrzej Szelc 3.1: Hans Steiger, Micheal Wurm, Stefan Schoppmann

Scaling-up Challenges:

- 4.1 Roberto Santorelli & Jim Dobson
- 4.2 Walter Bonivento & Minfan Yeh
- 4.3 Ines Gil-Botella , Jose Crespo , Giuliana Fiorillo

DRD2: UK input

Charge readout	Light readout	<u>Target</u> <u>Properties</u>	<u>Scale-up</u> <u>challenges</u>
ManchesterLiverpool	EdinburghManchesterLiverpool	•Edinburgh •Liverpool	Boulby (STFC)Edinburgh
	 Open Uni. RAL/STFC RAL PPD Royal Holloway 	 King's Oxford 	 King's RAL PPD Sheffield UCL
	 Royce Institute Sussex York 		

DRD2: UK input -> A coherent picture?

Charge readout	Light readout	<u>Target</u> <u>Properties</u>	<u>Scale-up</u> <u>challenges</u>
 Manchester 	 Edinburgh 		
•Liverpool	 Manchester 	 Edinburgh 	 Boulby (STFC)
Charge+light and charge-to-light	•Liverpool	•Liverpool	 Edinburgh
	•Open Uni.	•King's	•King's
	•RAL/STFC	•Oxford	•RAL PPD
	•RAL PPD	Isotope loading in LS	 Sheffield
	 Royal Holloway 	Quantum dots in WC	•UCL
	Royce Institute		All related to
	•Sussex	VUV sensors developmentradiopurity and bkgMetasurfaces for lightreductioncollectionreduction	
	• York		
		Large area WLS Improved fibers for light collection	7

DRD2: UK input -> A coherent picture?

Charge readout	Light readout	<u>Target</u> <u>Properties</u>	<u>Scale-up</u> <u>challenges</u>
 Manchester Liverpool Charge+light and charge-to-light 	 Edinburgh Manchester Liverpool Open Uni. RAL/STFC RAL PPD Royal Holloway Royce Institute 	 Edinburgh Liverpool King's Oxford Isotope loading in LS Quantum dots in WC Light propagation in nobles	 Boulby (STFC) Edinburgh King's RAL PPD Sheffield UCL
All related to lig	•Sussex •York	VUV sensors developme Metasurfaces for light collection Large area WLS Improved fibers for light collection	All related to radiopurity and bkg reduction See Ruben's talk 8

UK Coherent picture

Case Study2 : Increased light detection in liquid detectors

Issue: Increased light detection and reduction of both energy thresholds and backgrounds would be transformative for future neutrino and dark matter experiments. This requires R&D efforts to develop new and improved solutions for light detection, hand-in-hand with improved background rejection techniques. A step change in technologies to measure and control trace radioactivity and particulate contamination is also essential.

Aim: We aim to increase, improve and combine the light signals recorded, underpinned by ultralow background developments. A coherent R&D effort includes: development and characterisation of light sensors; increased collection and detection efficiency over a broad wavelength range; development of charge-to-light and charge+light readouts; and background reduction with improved material screening techniques and use of novel low-background materials.

UK DRD Activity: The UK community spans noble liquid detectors targeted at dark matter searches and neutrino physics, water Cherenkov detectors for neutrino physics and liquid scintillator detectors to search for neutrinoless double beta decay. The programme will benefit all these and <u>builds on previous investments in world-class facilities at the Boulby</u> underground laboratory, which will boost industrial engagement. Developing UK global leadership in light detection for liquid detectors and collaborating with international partners will improve the prospects for the UK hosting world-leading large-scale science projects.