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“Freedom is the consciousness of  necessity”
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Cosmic growth of structure
Late-time effects and Baryonic Acoustic Oscillations

Cℓ = ⟨δTℓmδTℓm⟩ Pm
lin(k)



Cosmic growth of structure

Padmanabhan+ (2012) [1202.0090] 
Mon.Not.Roy.Astron.Soc., 427, 3
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Cosmic growth of structure

Padmanabhan+ (2012) [1202.0090] 
Mon.Not.Roy.Astron.Soc., 427, 3
 Nikakhtar+ (2021) [2101.08376] Phys.Rev.D, 104, 4
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Introduction to Optimal Transport



Monge’s Optimal Transport (1/3)

Transport  to  at a cost  without loss via 
a ‘transport map’ .





Define ‘source measure’  and ‘target measure’ .  
Then ‘no loss’ means


 = 


i.e. mass balance.

xi yj c(xi, yj)
T(x)

T : X → Y

μ ν

μ(X) ν(Y)
xi ∈ X

T(x)

yj ∈ Y

Discrete setting
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Define ‘source measure’  and ‘target measure’ .  
Then ‘no loss’ means


 = 


i.e. mass balance.  In particular,


 =   ,  


or,  (‘push-forward’), ensures conservation 
of  mass.

xi yj c(xi, yj)
T(x)

T : X → Y

μ ν

μ(X) ν(Y)

μ(T−1(A)) ν(A) ∀A ⊂ Y

T#μ = ν

f(x)

g(y)

T(x)

A

 
Find optimal transport map  by
T

inf
T {∫ℝn

c(x, T(x)) dμ ∣ T#μ = ν}

Continuous setting

See also “Earth-movers distance (EMD)”



A 1-dimensional, discrete example
Book-moving problem (1/3)

Transport distribution of  books  to form other 
distribution  at a cost  without loss via a 
‘transport map’ .


Consider  and :





Solution 1: Move 1 book by N separations.


Solution 2: Move all N books by 1 separation each.


Optimal transport plan depends on cost!

f(x)
g(y) c(x, y)

T(x)

c1(x, y) = |x − y | c2(x, y) = (x − y)2

̂d = inf
T {∑

i

c(xi, T(xi))}



Considering weights and ‘splitting mass’
Kantorovich’s Optimal Transport (2/3)

How much mass is transported from  to  can 
be stored in another measure 


e.g.  documents how much mass moves 
from  to ,  and .


Conservation of  mass:


 



Optimal transport:


xi yj
π(x, y)

π(B, A)
B A ∀ B ⊂ X A ⊂ Y

π(B, Y) = μ(B) ∀B ⊂ X
π(X, A) = ν(A) ∀A ⊂ Y

inf
π {∫ℝn×ℝn

c(x, y) dπ(x, y) ∣ π ∈ Π(μ, ν)}
f(x)

g(y)

π(x, y)

A

xi ∈ X

π(x, y)

yj ∈ Y

m = 1

m = 1/2
m = 1/2



 
Find optimal transport map  by
T

inf
T {∫ℝn

c(x, T(x)) f(x) dx ∣ T#μ = ν}

Quadratic cost (2/3)

Brenier’s theorem:


A cyclically monotone map exists that 
can be expressed as a gradient of  a 
convex function (potential)





Transport goods along direct ways, or 
don’t move in circles!  (Note relation to 
curl-free fields in physics)

T(x) = ∇p(x)

Do Don’t

 
Subject to


f(x) = g(y) det (∇T(x))

Constraint can be non-linear

Brenier (1991) Communications 
on Pure and Applied 
Mathematics, 44, 375
This ensures convexity, cf. the cosmological setting



 
Find optimal transport map  by
T

inf
T {∫ℝn

c(x, T(x)) f(x) dx ∣ T#μ = ν}

Brenier’s theorem:


A cyclically monotone map exists that 
can be expressed as a gradient of  a 
convex function (potential)





With mass conservation this becomes:





Monge-Ampére equation

T(x) = ∇p(x)

det (D2p(x)) g(T(x)) = f(x)

 
Subject to


f(x) = g(y) det (∇T(x))

Quadratic cost (2/3)
This ensures convexity, cf. the cosmological setting

Brenier (1991) Communications 
on Pure and Applied 
Mathematics, 44, 375




Gradient flow in two slides (1/2)

 
Consider  convex


 



Backward Euler scheme (discrete)





Or:


F : ℝn → ℝ

x′￼(t) = − ∇F(x(t))
x(0) = 0

xn+1 − xn

τ
= − ∇F(xn+1)

∇[ 1
2τ

|x − xn |2 + ∇F(x)]
x=xn+1

= 0
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More generally, on metric space  
(and some conditions on )


 

(X, d)
F

xn+1
τ ∈ argmin { 1

2τ
d(x, xn

τ )2 + ∇F(x)}



Gradient flow in two slides (2/2)

More generally, on metric space  
(and some conditions on )


 



 
In  metric (Wasserstein gradient 
flows), and in continuous limit, one finds 
the PDE: 

(X, d)
F

xn+1
τ ∈ argmin { 1

2τ
d(x, xn

τ )2 + ∇F(x)}
𝕎2

ρt − ∇(ρ
δF
δρ ) = 0



Gradient flow in two slides (2/2)

More generally, on metric space  
(and some conditions on )


 



 
In  metric (Wasserstein gradient 
flows), and in continuous limit, one finds 
the PDE: 

(X, d)
F

xn+1
τ ∈ argmin { 1

2τ
d(x, xn

τ )2 + ∇F(x)}
𝕎2

ρt − ∇(ρ
δF
δρ ) = 0

Example:





leads to the PDE:





Heat equation from optimal transport!

F(ρ) = ∫ ρ log ρ dx

ρt − ∇2ρ = 0

Jordan, Kinderlehrer, Otto (JKO), SIAM Journal on Mathematical Analysis, 
1998, 29, 1 

 
see also, Santambrogio (2015), Optimal transport for applied 

mathematicians. Birkhäuser/Springer



Semi-discrete Optimal Transport (3/3)

f(x)

g(y)

π(x, y)

A

xi ∈ X

π(xi, yj)

yj ∈ Y

f(x)

π(x, yj)

A

yj ∈ Y

Discrete OT Continuous OT Semi-discrete OT

Initial condition

Final condition

Initial condition

Final condition
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f(x)
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Cosmological growth of matter
Euler-Poisson system:

But in expanding background, , in comoving coordinates, , 
and proper time, :

v = H(t) x x = a(t) q
dt = a(t)dτ

∂tρ + ∇(ρv) = 0
∂tv + (v ⋅ ∇)v + ρ−1 ∇p + ∇ϕ = 0
Δϕ = 4πGρ

∂τρ + ∇x ⋅ (ρv) = 0

∂τv + (v ⋅ ∇x)v = −
3
2τ

(∇xϕ + v)

Δxϕ =
ρ − 1

τ



Define initial and final times





Poisson eq.: Initial density  
Euler eq.: 


Consider Lagrangian coordinates  
and Euler equation becomes





“Zel’dovich approximation”

τ ∈ [τI, τF] = [0,1]

ρ(x, τI) = 1
v(x, τI) = − ∇xϕ(x, τI)

q

v(q, τI) ≈ − ∇qϕ(q, τI) = − ∇qϕI(q)

→Solves Poisson equation and results in uniform, rectilinear motion: 
xF(q) = qI + τFvI(q) = qI − τF ∇qϕI(q)

Cosmic growth of structure

∂τρ + ∇x ⋅ (ρv) = 0

∂τv + (v ⋅ ∇x)v = −
3
2τ

(∇xϕ + v)

Δxϕ =
ρ − 1

τ



Define initial and final times





Poisson eq.: Initial density  
Euler eq.: 


Alternatively considering  to be 
the  geodesic between  and , 
and if   is the Kantorovich potential 
then





τ ∈ [τI, τF] = [0,1]

ρ(x, τI) = 1
v(x, τI) = − ∇xϕ(x, τI)

ρ(x, τ)
𝕎2 ρI = 1 ρF

ϕ

det (I + τD2ϕ(x, τ)) = ρ(x, τ)

→Solves the Monge-Ampére equation and also results in uniform, rectilinear 
motion: xF(q) = qI + τFvI(q) = qI − τF ∇qϕI(q)

Cosmic growth of structure

∂τρ + ∇x ⋅ (ρv) = 0

∂τv + (v ⋅ ∇x)v = −
3
2τ

(∇xϕ + v)

Δxϕ =
ρ − 1

τ






Consider the action





which (almost) gives the momentum 
equation when varied for given .


Now consider the equivalently 
minimised functional


x(q, τ) = q +
τ
τF

(xF(q) − q)

I =
1
2 ∫

τF

τI

dτ∫V
d3x ρ |v |2

x(q, τ)

Cosmic growth and optimal transport

inf
xF ∫V

d3q ρ(q) |q − xF(q) |2Benamou&Brenier (2000), 
Numerische Mathematik, 84, 375


∂τρ + ∇x ⋅ (ρv) = 0

∂τv + (v ⋅ ∇x)v = −
3
2τ

(∇xϕ + v)

Δxϕ =
ρ − 1

τ



Cosmic growth and optimal transport

inf
xF ∫V

d3q ρ(q) |q − xF(q) |2

Subject to mass conservation 
(continuity equation) and appropriate 
boundary conditions.


Mass conservation in Lagrangian 
coordinates:





The final positions  are the 
gradient of  a convex potential

ρF(xF(q)) det(∇qxF(q)) = ρI(q)

xF(τ)

 
Find optimal transport map  by
T

inf
T {∫ℝn

c(x, T(x)) dμ ∣ T#μ = ν}

 
Subject to


f(x) = g(y) det (∇T(x))

 
Brenier’s theorem

 
Dark matter mover’s distance

Frisch+ (2002) [astro-ph/0109483] 
Nature, 417


Brenier+ (2003), [astro-ph/0304214] 
Mon. Not. R. Astron. Soc.,


346




Qualitative comparison of reconstructed density field
AbacusCosmos simulations — distributions
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Lévy, Mohayaee, SvH. [2012.09074] Mon.Not.Roy.Astron.Soc. 506 (2021) 1, 1165
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AbacusCosmos simulations: 
 — 10 -body simulations with CDM cosmology 
 —  volumes 
 —  out of   particles 
 — Reconstruct from redshifts 

N Λ
(1100h−1Mpc)3

2563 14403

z = 0.3, 0.7, 1.5

Lévy, Mohayaee, SvH. [2012.09074] Mon.Not.Roy.Astron.Soc. 506 (2021) 1, 1165



Qualitative comparison of reconstructed density field
AbacusCosmos simulations — distributions and one-point functions
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Qualitative comparison of reconstructed density field
AbacusCosmos simulations — distributions and one-point functions
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Quantitative comparison of reconstructed density field
AbacusCosmos simulations — two-point functions
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Reconstruction of Baryonic Acoustic Oscillations
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FastPM simulations and comparison with “standard reconstruction”

FastPM simulations:


 — 10 pairs of  -body simulations 
with CDM cosmology 
       — with and without BAO 
 —  volumes 
 — ~1% out of   particles 
(~85 million particles) 
 — Reconstruct from redshift 

N
Λ

(1380h−1Mpc)3

20483

z = 0

SvH, Mohayaee, Lévy. [2110.08868] Phys.Rev.Lett. 128 (2022) 20, 201302 

https://arxiv.org/abs/2110.08868


Reconstruction in Cosmology
Optimal transport is a well-studied, versatile language applicable to a range of  
different problem settings in pure and applied mathematics + theoretical physics!


Cosmological reconstruction can be rephrased as an optimal transport problem


Efficient algorithms from computer science can make solving scalable


Results show high accuracy and promising prospects for upcoming astronomical 
and cosmological data


— Unveil relations to other problems!

SvH, Mohayaee, Lévy. [2110.08868] Phys.Rev.Lett. 128 (2022) 20, 201302 

Lévy, Mohayaee, SvH. [2012.09074] Mon.Not.Roy.Astron.Soc. 506 (2021) 1, 1165

https://arxiv.org/abs/2110.08868




“Freedom is the consciousness of  necessity”

Thank you!  And happy birthday, Subir!


