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[4] C. O’Hare, “cajohare/axionlimits: Axionlimits,” (2020), URL
https://doi.org/10.5281/zenodo.3932430.



The

& o Exclusion Limits World-Wide

Sheffield.

10~
10~7 CROWS  ALPs.I
10—8 OSQAR
107 CAST
— 10—10 Horizontal branch
| =
1o
> = =g
Q 1012 - S
O, 1 i
=10 M ' (39(
b% 10~

+

A

>
A 'reasonably comprehensive' ?}&
resonant cavity axion search.
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Q528 How Long Does A Reasonably Comprehensive
Resonant Cavity Axion Search Campaign Take?
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2 A really long time!

SNR = 4
Ps =2 x 1072 W e oo
Pn =kg X (0.2K) X (500HZ)  tmaxis 24aHs (100 miero ev axion
=14x 1074w :
meE Dtdf
J I — T= /
P_N:7_O 4:% Bt fmin f/QL
I - DQuENR)Q, (2 / o
" ’ PS fmin f2
D = 20
Q; =5 x 10* T = 100 years
SQNR::1617 This isn't great news. Is there any way to

make this go faster?
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s 1he Elephant in the Room

We are basically stuck tuning a single cavity resonance. Only get +/- 30%
tunability per cavity geometry. Takes forever to cover a significant mass range.
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Courtesy of Holger Notzel,
www.kometamps.com
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=== Resonant feedback
concept

Cavity Resonant feedback
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IN COLLABORATION WITH CHELSEA BARTRAM, PANOWSKY FELLOW (STANFORD)

Nuclear Inst. and Methods in Physics Research, A, Volume 921, p. 50-56.
https://arxiv.org/abs/1805.11523
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Advantages of Resonant Feedback

* You can make more than one parallel resonator.

» The form factor for ‘capacitor like' fields is 1.

*No tuning rods! No moving parts in the fridge.

* The mode frequencies are not controlled by the
dimension of the apparatus.

*Because you are injecting energy through
feedback, you can achieve very high mode Q,
and hence very high sensitivity.
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Realistic electronics
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F 45 178 60 | -2 [ emp - Signal
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Nuclear Inst. and Methods in Physics Research, A 921 (2019) 50-56
https://arxiv.org/abs/1805.11523



https://arxiv.org/abs/1805.11523

The

miversity - FPGA digital filter implementation

9 Of
@  Sheffield.

Digital filters implemented on
an FPGA (Xilinx Artix 7) housed
on a low budget development
board.

ADC/DAC have 493kHz
bandwidth - just borrowed the
on-board ADC used for measuring
the chip temperature.

uuuuuuuuu

Several parallel resonances
e U/ sy W\ can be created even on this
SR s ane . e Cheap board. True real time

T R, N te| deterministic - no operating
system to get in the way. Same
number of clock cycles every
calculation.
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Room temperature tests at ADMX

FPGA Resonance Peaks

—20 1

)
S
o —404
2
o
a
_60 .
—— 35 kHz
—— 30 kHz
—— 25 kHz
-80 - —— 15 kHz
—— NO resonance
0.040 0.045 0.050 0.055 0.060
Freq (MHz) +2.6396e3

Frequency offset in MHz from 2.6396 GHz

Dr. Chelsea Bartram, ADMX, Spring 2021.
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Closed loop power spectra with an injected sine wave
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Central frequency of 4.95 GHz
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Peaks at 5 injection frequencies. All signals
were injected at the same power level.

Note that the power level induced by the injected
signal is enhanced in the vicinity of the induced
resonance, exactly as we see for natural cavity
resonances
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Vo cos(wt)
_ Differential signal
~ feeds back to control
f resonant feedback gain
—Vh cos(wt)

It Is also important to control the PHASE of the
output signal so that the signals on the two plates
are exactly in antiphase. This requires some
frequency control, as well as amplitude control.

18
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Some Further Thoughts on Feedback Control

Feedback controlled oscillators used in a variety of physics
experiments also allow the frequency of the wave in the loop
to wander and track signals. Can this be applied here? Possibly.

An undergraduate student project (Adam Carter, 2021-22)
showed how the sensitivity could be enhanced by using a
PHASE LOCKED LOORP circuit so that the feedback also
allowed the frequency of the wave in the feedback circuit to
follow the drive frequency from the axion as it varies naturally
due to the axion linewidth.

What is a phase locked loop, anyway?
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Principle of Phase Locked Loops

phase detector low-pass filter
R Vi, fi Vphi
"*’A}a“*j,in ut % 1
WY o ? PD 1 LPF D output
| | %
VvCOoO ¢
Vosc, fosc

voltage-controlled
oscillator

The ERROR SIGNAL is the output of the phase detector. It is LINEAR in departures of the
phase, or frequency, of the input signal from that of the Voltage Controlled Oscillator (VCO)
output signal. If the PLL is perfectly locked on the signal, the ERROR SIGNAL is zero.

BUT if this were true, you would just disconnect the loop, therefore the error signal is NEVER
exactly zero, rather it fluctuates about zero, with (relatively) small fluctuations.
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oo The PLL solves a Non-
Convex optimisation problem

Whenever the input wave is in phase with the oscillator
reference wave, the error signal is zero. The behaviour of
the PLL error signal has TRANSLATIONAL INVARIANCE

with respect to displacement of the Voltage Controlled
Oscillator by ANY INTEGER MULTIPLE of the wave period.
Any one of these minima of the error signal is an equally
good result. There are MULTIPLE MINIMA of the error signal,
or the COST FUNCTION, and they are all equivalent.

Classically, yoLl are alwa:ys in ONE of these minima, whilst
the PLL is 'locked'.



Phase locked loop failure
- a bicycle analogy.
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Phase transitions of bicycle chains

Worn bicycle chain drives have two distinct phases

Unmeshed, or (rather terrifying, especially on a steep slope) unlocked
phase, where the chain slips abruptly over multiple teeth, jarring and
uncomfortable, and loss of motive power. Danger of falling off the bike !

Meshed, or locked phase, where the chain meshes with the teeth of the
drive wheel, power is restored, progress resumes, a PARTICULAR
set of chain links meshes with a PARTICULAR set of teeth on the drive

wheel, at least in the classical limit.

Our thought experiment suggests the conclusion that the 'locking' of
feedback control loops is an example of a phase transition, from a
disordered to a more ordered phase. Furthermore, in the ordered phase
there is a SYMMETRY (translational by multiples of the period) that is
not evident in the higher energy disordered phase....
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Operating points of transistors

The purpose of a control system is to stabilise some plant so that its
quiescent state is stable, and that any future evolution of the system
can be treated as fluctuations about that quiescent 'operating point’

Example - a transistor used as an amplifier. In a common emitter
configuration, a bipolar transistor has the DC voltages at the base lead
set to some operating point. A small fluctuation in the base voltage
then leads to a fluctuating collector current, resulting in an oscillating
response in the collector voltage. Transistor bias is (especially in high
tech transistors) maintained by a control system, for example a
‘constant voltage' source.

As a 'device theorist', you can forget about the bias voltages and just
use a small signal model of the transistor - what small signal occurs at

the output in response to a small(er) signal at the input.



samm.  Axions and the Strong CP problem

Standard model symmetry group is SU(3) x SU(2) x U(1)

NON-ABELIAN NON-ABELIAN ABELIAN

CP CP
VIOLATING CONSERVING

‘ ‘,’.::' Y i, N

(© 4+ argdet M) =
\CONSERVINGY/

Eocn - B
3972 QCD * DQcD

Evidence for CP conservation in the SU(3) strong interactions
from multiple measurements of neutron and nuclear electric
dipole moments. For example, neutron EDM < 10-26 e-cm.

NEUTRON
Even simple dimensional arguments @
3

show that this is unexpected. Why do =
the SU(3) QCD interactions conserve 10~"% cm

CP when SU(2) QED interactions do 4 ’
not? This is the strong CP problem. ‘_726

Lcpy =




= Operating points in field theory.

In field theory you work with operating points all the time, it's just that
for simple systems it's so obvious what the operating point is that you
don't ever notice it. For example, a mass on a spring or a pendulum.

In a more sophisticated example, the operating point in classica
electrodynamics and classical gravity is a vacuum - the electromagnetic
classical vacuum consists of zero electric and magnetic fields, the
gravitational classical vacuum consists of zero spacetime curvature.
Fluctuations about this operating point yield electromagnetic and
gravitational waves, respectively.

In quantum field theory, vacuum fluctuations ensure that spacetime is
never completely empty, but instead is populated with virtual fields,
particle-antiparticle pairs if you like. Therefore even in the vacuum

state there is a lot going on!

However, even in quantum field theory, there is a single 'vacuum' state,
a single configuration of vacuum fluctuations, isn't there? The vacuum

Is complicated, certainly, but surely it is at least unique?



QS8 Physical Motivation for Positing CP violation in
Quantum Chromodynamics

It's one thing to identify interaction terms in a theory that correspond to
CP violating effects, but quite another to find a physical basis for them.

Instantons provide one physical basis. Start with the QCD
Lagrangian for just the fermion fields representing the quarks masses m,

LQCD — W (Z'”)/'uau — ma) wa

QCD is a local gauge theory. This means that given some quark fields,
wa (x) all the terms in the Lagrangian for the theory are invariant under a
class of gauge transformations that mix these quark fields into each other:

P x) — e T @20 (1) = Gy ()

Here Tb are matrices called the generators of the group of transformations
under which QCD is invariant. In QCD there are 8 of these generators, and
the index b sums over them. Each generator has a coefficient ¢°(z) that
parameterises the transformation. The gauge invariance is local because
these coefficients are functions of position. The exponential of a square
matrix is also a matrix, by series expansion of the exponent.



ﬁ Gauge Covariant Derivative

The 8 SU(3) group generators obey commutation relations defining the Lie
Algebra of the group SU(3). :Ta, Tb] _ ifabCTC

The f a%¢ are numbers called the structure constants of the group. There is
an implied sum over all 8 values of ¢ on the right. You've seen this before in
electrodynamics, where the Pauli matrices are generators of the SU(2) group,
and [09 a"“] = 2zemka You can find this in the wikipedia article on the Pauli
matrices, for example. SU(3) is more complicated because there are more
structure constants, more of them are nonzero and they differ in magnitude.

All this leads to a problem with differentiating. The derivative of wais obtained
by taking the difference between the ¢as at neighbouring points, but under

a gauge transformation, the fields at neighbouring points transform in different
ways, which muddies the water in terms of the conventional derivatives. The
solution is to define a covariant derivative DM — 0, + igSAb Tb/2

b -
where the Au are defined such that terms like )2~* Duwa’are invariant
under gauge transformations. So the locally gauge invariant QCD Lagrangian is

Lqocp = ¢ (iv* Dy, — m®) °



Aaas  Gauge fields in the Lagrangian

The gauge fields A ,(x) themselves don't appear in the Lagrangian, but
as in electrodynamics they can be used to define field strength tensors that
can be formed into gauge invariant terms that do appear. However they are
more complex than the electromagnetic field strengths.

- bc Ab
Fii, = 0u A} — 0, A}, — igs f*° A A]
These fields appear in the Lagrangian through the term — ZFZVFMVCL

These represent the energy stored in the QCD analogies to the electric and
magnetic fields, which are the gluon fields. Back in SI (MKS) units,

_EFCL F,LLI/CL _ 8_() E—»a 2 I 1 ECL 2
4 HY 2 Q/LQ
Including these gauge field terms, the locally gauge invariant QCD lagrangian
IS oW 1 0 puva | D= g N g
ﬁQCDZ—ZFWF + o (" Dy — m®)

where again a sum over quark flavours a is implied. This lagrangian is invariant
under local gauge transformations and the discrete CP transformation.
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Definition of gauge field operators
Ta

We define the operators A, = Aa e

leadingto  F, =0,A, — 0, A, —1gs[Au, A

You can show, after some not particularly pleasant algebra, that in order for
¢@ LD wa to be invariant under local gauge transformations, you require
that the Correspondlng transformation on these fields are

—1 —1
A, — GA,G™ - g—(é’MG)G .
S
The A, (z) act as both the connection between the gauge transformations
at neighbouring points, and as the gauge fields analogous to the vector
4-potential in electromagnetism.



Lo=S  Vacuum of QCD - or is it vacua?

Because we are mterested in the vacuum state of QCD, then in that state we

might require A — (). Gauge transformations starting with this vacuum state
are therefore of the form Ab b :
> 0,G)G™1.
2 93( M )

Are there multiple distinct vacuum states? That is, are there G such that the
resultant A are also A=0, but separated from the original A only by gauge
field configurations that do not correspond to vacuum states? Are there
separated minima in A? In other words, are there multiple, classically
distinct, QCD vacua?

It turns out that there are, as was shown by Polyakov and Tyupin in the

1970s. It is sufficient to show that such vacua exist in an SU(2) subspace of
SU(3), so we're back to the ordinary Pauli matrix generators, and in

imaginary time, so that we have 'Wick Rotated' the time axis, L4 = 1o = 1ct
Consider the gauge transformation R




(0 — :C;Q—I:I_ zrﬂ;
4
Starting at one gauge vacuum, A=0, applying this gauge transformation
leads to z’ A i 7.5
Ap = = (0,G)G™".  sothat Y ogs a3+ |E
A, — 0iT4 T EiklOITE

2 —
gs(x3 + |7]°)
It turns out that, after some extremely tedious and lengthy algebra,

~ e
a aur a HVOW 1ha

~ 9,K,

where Ko 22
Y221+ 172 but, why do we care?



g 2=CX Instantons

4: - 4 windin winding
/d $Fa,uyFa pr 4/d afK,u nu,,‘,’be?O ||=m,|;eo On‘::ffr

|nter|or

IFyy!=0 IF o =0
t=+
— 4 7{ K -dS

FIG. 1. A pictorial representation of instanton tunnelling.

The physical interpretation is that this gauge transformation connects
two distinct vacua having different gauge field configurations

Now, starting at A=0, apply the same gauge transformation v times,
and you get

g0
/ d*z " _F*, P = vl

7.‘.

There are an infinite number of distinct vacua labelled by a winding
number V. There is therefore NOT a single unique QCD vacuum.

Polyakov and Tyupin's discovery implies there are an infinite number
of them.
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9 S Effective Lagrangian for QCD
incorporating Polyakov's vacuum states.

Classically, you can have many vacua and only physically be in one of
them (think of the bicycle chain again). Quantum mechanically, tunneling
connects the vacua, so the physical vacuum is a superposition of them.

0) =) ¢ n)

n

The 'partition function’, or 'generating functional' for the theory, used
to generate all the Feynmann rules for processes (fluctuations) about the

vacuum state is then 7, = <9, ‘ o—iHt ‘ 9>J

_ Z e—ime’eme <m ‘ e—th | n>J

m,n

_ 5(9 _ 6)/) Ze—il/ﬁ <m | e—th | TL>

| 24



JQSXS FEffective Lagrangian in the presence of Instanton
Tunnelling between vacuum states.

Re-write the time evolution of the hamiltonian as an integral over
all possible configurations of the gauge fields

75 = Ze_iye/[dA]yexp —’i/d4$(£—|— JA)

Bring the exponential inside the integral over the fields

Zy=Y /[dA],, exp —i |V + /d%(ﬁ + JA)

but 20 N
— [t B, o
1672

_ 992 . -
L o 4 | S
SO ZJ — zl/:/[dA]y EXP —1 /d Q?(L i 167T2FF—|_ JA)




p 2N What have we done here?

Og? - ]

s

We've shown that Polyakov and Tyupin's discovery of a rich basis of
classically distinct QCD vacuum states can be re-cast into a new term
in the QCD Lagrangian. Once you have this term, it gives rise to new
Feynmann graphs that express fluctuations about the vacuum state.

Consider, we also showed that in a feedback circuit, there may exist
multiple distinct locked states, which are just like classical vacuum
states. Classically, you are only in one of them. Imagine that you now
have a feedback control circuit operating in the quantum limit. QSHS
may soon have such a circuit used as a resonant axion detector.

This mathematics strongly implies that the behaviour of such a circuit
may also be described by an effective Lagrangian analysis.



&= Conclusions

1. Sensitive axion searches are rendered slow by the faintness of the
axion signal. You must wait and average away noise.

2. Feedback circuit induced resonances can sidestep this problem by
allowing multiple simultaneous resonant frequencies.

3. A feedback circuit with multiple locked states at very low
temperatures is an example of gquantum feedback.

4. In a quantum feedback circuit, multiple distinct phase-locked
resonant configurations should be superposed.

5. The physics of instantons shows us how to analyse the
consequences of this behaviour using field theory.

6. We can also think of the transition from an 'unlocked' configuration
of a feedback circuit to a 'locked' configuration as a phase
transition from a high energy vacuum state without multiple distinct
vacua to a low energy vacuum state having distinct vacua. This may
allow the analysis of feedback circuits using the machinery
developed to understand phase transitions.

7. Thanks for listening. And, if you are theoretically inclined, there
should be a quantum systems theory postdoc advertised in a few
weeks. We'd really like to get a good applicant! It's fascinating stuff.




