



# **Quantum Simulators of Fundamental Physics**

**Silke Weinfurtner** The University of Nottingham



## Sebastian Erne

The University of Nottingham



UNITED KINGDOM  $\cdot$  CHINA  $\cdot$  MALAYSIA

#### Theoretical Framework

#### Fundamental Physical Processes

## Quantum Field Theory In Curved-Spacetimes



## Gravity: General Relativity

equivalence principle dynamical spacetime





## Rotating Black Holes e.g. Superradiance

Black Holes

e.g. Hawking radiation



Cosmological spacetimes e.g. Early Universe Processes



Quantum Vacuum e.g. The False Vacuum Decay

## **Quantum Field Theory**

#### Analogue Simulators

#### Fundamental Physical Processes

#### There exists a **broad** class of systems







## Rotating Black Holes



#### Black Holes



Cosmological spacetimes



Fluctuations described by an **effective Relativistic Quantum Field Theory** in **flat** or **curved** spacetimes.







#### Recent successful examples of Analogue QFT Simulations



#### Rotating Black Holes

- Superradiance Weinfurtner 2017
- Light bending Weinfurtner 2018
- Quasi-Normal Modes

Rotational superradiant scattering in a vortex flow Theo Torres, Sam Patrick, Antonin Coutant, Mauricio Richartz, Edmund W. Tedford & Silke Weinfurtner *Nature Physics* volume 13, pages833–836 (2017)



#### Black Holes

- Hawking Radiation: Weinfurtner/Unruh 2011 Faccio 2011 Rousseoux 2016
- Black-Hole Laser: Steinhauer 2016

Observation of quantum Hawking radiation and its entanglement in an analogue black hole Jeff Steinhauer Nature Physics volume 12, pages 959–965 (2016)



#### Cosmological spacetimes

- Particle Production Westbrook 2012
- Hubble Friction Campbell 2018

A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman,

and G. K. Campbell *Phys. Rev. X* 8, 021021 (2018)

How versatile a tool are these simulators..? How much more is there to be done..? Analogue simulators are versatile, because it is possible to set up and manipulate:

- **Signature of Spacetime** Euclidean ↔ Lorentzian
- Spacetime Geometry
  - $\rightarrow$  Flat spacetime
  - $\rightarrow$  Black Hole Horizon
  - $\rightarrow$  Cosmological scenarios
- Effective Mass Stable ↔ Unstable
- Effective detectors  $\rightarrow$  Unruh radiation



A timely and rapidly growing field of research with many more successes to be expected in the near future...

## - Collaborators -



Hiranya Peiris UCL / Oskar Klein Centre Stockholm

cosmology / early universe phenomenology







Matthew Johnson

Perimeter Institute /

theoretical physics /

theoretical cosmology

York University



Andrew Pontzen UCL

cosmology / numerical simulations



**Jonathan Braden** Canadian Institute for Theoretical Astrophysics

Theoretical physics / non-linear and non-equilibrium dynamics



- Cosmological theories inspired by particle physics exhibit vacuum decay
- Vacuum Decay is quantum tunnelling out of the false vacuum via bubble nucleation
- Non-equilibrium physics: relativistic first-order phase transition



→ understanding dynamics of relativistic first-order phase transitions will shed light on the origin of our observable universe

## We are building upon the proposal by

O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond and J. Brand, **The universe on a table top: engineering quantum decay of a relativistic scalar field from a metastable vacuum**, J. Phys. B50 (2017) 024003, [1607.01460].

#### 2-component coupled Bose-Einstein Condensates (BECs)

ultra-cold dilute gas of N bosons, in two-single particle states pseudo-spinor BEC (e.g. atoms in two different hyperfine states or double-well potential)

$$\hat{\mathcal{H}} = -\hat{\Psi}_i^{\dagger} \frac{\hbar^2 \nabla^2}{2m_i} \hat{\Psi}_i + \hat{\Psi}_i^{\dagger} V_{\text{ext},i} \hat{\Psi}_i + \frac{g_{ij}}{2} \hat{\Psi}_i^{\dagger} \hat{\Psi}_j^{\dagger} \hat{\Psi}_i \hat{\Psi}_j - \frac{\nu}{2} \sigma_{ij}^{\text{x}} \hat{\Psi}_i^{\dagger} \hat{\Psi}_j \qquad \sigma^{\text{x}} = \begin{pmatrix} 0 \ 1 \\ 1 \ 0 \end{pmatrix}$$

**Condensation:**  $\hat{\Psi}_i = \sqrt{\hat{\rho}_i} e^{i\hat{\phi}_i} \longrightarrow \psi_i = \sqrt{\rho_i} e^{i\phi_i}$ 

#### The False Vacuum Decay – Physical System & meta-stable vacua for small fluctuations

### Dynamics of relative phase exhibits sine-Gordon Lagrangian

global minima and maxima minima  $\rightarrow$  stable maxima  $\rightarrow$  unstable



## False Vacuum Decay

Fialko et al. suggest to add a high frequency modulation in the transition coupling → maxima rendered meta-stable





#### Our Results on Investigating experimental feasibility

- <u>Feasibility study</u>: Towards the cold atom analog false vacuum; JHEP 07 (2018) 014
- <u>Application to cosmology</u>: A New Semiclassical Picture of Vacuum Decay, under review in PRL
- <u>Lattice simulations</u>: work in progress



## Relativistic simulations of the False Vacuum Decay give insights into:

- the quantum origin of the Universe: emergence of classical bubble from quantum fluctuations;
- true quantum dynamics of first-order phase transitions, e.g. a complete treatment of multi-bubble configurations;
- The effective quantum field theory for small fluctuations in Bose-Einstein Condensates out of equilibrium.

## The development of Relativistic Field Theory Simulators:

- From theoretical framework to experimental implementation;
- Special emphasis on Early Universe Scenarios, e.g. The False Vacuum Decay;