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Standard model symmetry group is SU(3) x SU(2) x U(1)

NON-ABELIAN NON-ABELIAN ABELIAN

CP CP
VIOLATING CONSERVING

(© +argdet M) =
CONSERVING' '

Lcpy = 392 Eqcp - Baep

Evidence for CP conservation in the SU( ) strong interactions
from multiple measurements of neutron and nuclear electric
dipole moments. For example, neutron EDM < 1026 e-cm.
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Even simple dimensional arguments
show that this is unexpected. Why do
the intricate SU(3) QCD interactions
conserve CP when the less intricate
SU(2) QED interactions do not? This is =
the strong CP problem.
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The axion is a pseudoscalar; has the

same guantum numbers as the T

and the same interactions, but with

coupling strengths scaled by the axion mass
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Some experimental details of the
Sikivie RF-cavity technique

Primakoff Conversion

- The conversion is resonant, i.e. the frequency
must equal the mass + K. E.

- The total system noise temperature Tg=T + T
Is the critical factor

Currently T + Tn = 150mK + 150mK = 300mK

Signal to noise ratio: the ratio of
the signal power to the size of the

Signal bin-to-bin fluctuations in noise power
Power Radiometer Equation (Gibbs 1902)
P P
S S
S~ 10 SNR = = VAt
Frequency (GHZ) For DFSZ axion, ~1000 seconds per tuning rod position
to achieve SNR of 4.
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Calculated

Signal
Strengths
in ADMX2

Combined SNR

Single Spectrum SNR (offset)
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1.) So long as th
aquires a phase
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e circulating field
of 2nm in a round-trip,

resonance results. This is the Nyquist stability
criterion, on which ALL resonators rely.

2.) For an incide
high amplitude,
least the round t

Nt field to drive the resonance to
It must be coherent over the at

'ip time of the circulating field.
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Courtesy of Holger Notzel,
www.kometamps.com
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Maintain open-loop gain at <1 so the circuit doesn't
start to oscillate by using a suitably large attenuator.

https://arxiv.org/abs/1805.11523
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De Broglie wavelength of halo axions)\ _ 2mhe ~ 500 m
(assuming 4 microelectronvolts), Bmc?2

Virial velocity of cold dark matter is about
240 km/s, which is 8e-4c¢, so coherence time Is 2ms.

Assume feedback loop involves 20m of RG401 coax and

a 250MHz ADC/DAC pair, the total delay time round the
loop is 108 ns (dominated by the coax). This means the
axion signal can circulate 18500 times around the feedback
loop In 1 e-folding of coherence

Conclude that a feedback induced resonance is just as
good as a cavity at enhancing the axion signal by a
factor of Q.
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100 15kHz wide resonances, separated by 150kHz.

Q per resonance of approx 1GHz/15kHz=67000.

Total bandwidth into digital electronics 15SMHz.

Noise in 1T5MHz band assuming system noise
temperature of 300mK, -132dBm.

Total integration time for DFSZ

Assume an axion signal bandwidth of 750Hz, 300mK
system noise, hence a signal-to-noise ratio of (10-22W/
3.1x10-2"W).DFSZ sensitivity requires an integration
time of 1120s, during which we cover 1.5MHz.

2-40 micro eV corresponds to 4.34GHz bandwidth, so
that the total integration time is 1120s x 4340/1.5
which is 37.5 days. This assumes a form tactor of 0.4!
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Noise budget

Location | Total summed | Noise from lo- Signal o
noise into | cal component | power Noise in
750Hz  band- | into  750Hz 15MHz
width bandwidth bandwidth
[dBm] [dBm] [dBm)] | [dBm]
A -175 -178 -190 -132
B -155 -166 -170 -112
C -135 -166 150 | -92
]IE) :f 1%5;0 :éﬁo '_722 Room  Digital
F 45 178 .60 2 ITemp Signal
G 175 178 190 | 132 MSA  HEMT HEMT Amps  Processing
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Short term plans for resonant feedback
axion detector

eCapacitor prototype to be installed on ADMX
below main cavity by December 2018. Volumge
of 3 litres in a 7T magnetic field.

o2nd FPGA prototype to be developed -
100MHz bandwidth. Implement 100 parallel
filters and do warm test.

o[eld test on ADMX prototype Easter 2019
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Fig. 2. The response of APL to phasor inputs as a function of the phasor
frequency in radians per sample, for different values of the parameter w.
Smaller w yield a sharper peak in the response at A, where A is the response
frequency of APL in radians per sample.
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quantum limit?

At 1GHz, a single quantum is at
hf =6 ueV

The ADMX electronics has a noise temperature of
300mK, so that kpT = 26€V

This is 4.3 quanta of oscillation. The state of this
feedback circuit is that of a not-very-highly-excited,
software configurable quantum harmonic oscillator.
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Action of IWAVE digital
filter on a simulated
Glauber state

45Hz input - Phasor with
unit amplitude + rm.s. 0.1
gaussian displacement,
phase randomised over 2pi.
Response time of 1s

Filter Q of 142.

Filter then
attenuate:
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Apphcathns beyond Axion dark

matter

e \What we have here is a set of energy states of user-

configurab

® [he output

frequency

e spacing and lifetime.
of the amplifier chain is in the GHz

regime, and will exhibit observable phase

and amplitude properties of a quantum state.

e The configuration can be driven with injected signals,
either electronic signals injected classically, particles,
lons, or other things.

e More interesting digital filters could couple different
frequency channels with time evolutions of channels
using representations of groups other than U(1).

e Even if axions are not your bag, the properties of this
system may be of interest to the community.
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e Quantum measurement is already exploited through
SQUID and JPA amplifiers developed for axion
searches.

e Resonant feedback could speed up the search rate
of these experiments to reasonable discovery
potential.

e Same ideas applicable to other hidden sector
probes.

e Careful study and prototyping towards these ideas
is very well aligned with QSFP.

e Applications of guantum-limited resonant teedback
beyond dark matter are intriguing (at least to me).



