Beyond Standard-Model physics with ion trap methods

Andrew Steane

Oxford University

1. Physics Letters A 381 (2017) 3905-3908

Matter-wave coherence limit owing to cosmic gravitational wave background

Andrew M. Steane

2. PHYSICAL REVIEW A **95**, 032112 (2017)

Detecting continuous spontaneous localization with charged bodies in a Paul trap

Ying Li, Andrew M. Steane, Daniel Bedingham, and G. Andrew D.

Briggs

 $\Omega_{\rm GW} \equiv \frac{1}{\rho_c c^2} f \frac{{\rm d}\rho(f)}{{\rm d}f}$ (Dimensionless measure of g-wave spectral energy density)

Gravitational wave background → wash out interference of matter waves

Following Lamine, Jaekel and Reynaud, Eur. Phys. J. D 20, 165 (2002); Lamine, Hervé, Lambrecht, Reynaud, PRL 96, 050405 (2006)

Gravitational plane wave $h_{ij}e^{-ik_{\mu}x^{\mu}}=\frac{(\mathbf{e}_{i}\mathbf{e}_{j})^{*}}{\sqrt{2}}he^{-ik_{\mu}x^{\mu}}$. Interferometer phase for particle of mass m, velocity $\mathbf{v}\ll c$:

$$\phi = \frac{E}{2\hbar} \int_{\tau_{i}}^{\tau_{f}} \mathbf{h}_{ij} \mathbf{v}^{i} \mathbf{v}^{j} d\tau = \frac{mc^{2}}{2\sqrt{2}\hbar} \mathbf{h} \int_{\tau_{i}}^{\tau_{f}} (\mathbf{e} \cdot \mathbf{v})^{2} e^{-ik_{\mu}x^{\mu}} d\tau$$

→ variance when g-waves are randomly fluctuating:

$$\Delta\phi^2 = \int \frac{\mathrm{d}\omega}{2\pi} \quad S_h[\omega] \qquad A[\omega] \qquad \frac{\omega^2}{\omega^2 + \Gamma^2}$$
 g-wave interferometer high-pass noise response filter spectrum

$$\Delta \phi^{2} = \frac{24H_{0}^{2}\Omega_{GW}}{\pi\hbar^{2}} m^{2} (v\tau)^{4} \int_{0}^{\infty} \frac{\sin^{4}(x/2)}{x^{3}(x^{2} + 1/100)} dx$$
$$\simeq 290.6 \frac{H_{0}^{2}\Omega_{GW}}{\hbar^{2}} \rho^{2} R^{10}$$

e.g.
$$\Delta\phi^2=\pi^2$$
, $\Omega_{\rm GW}=10^{-14}$, $ho=2650~{\rm kg/m^3}$ (silica) $ightarrow R\simeq 2~{\rm mm}$.

Conclusion:

You cannot observe interference of a 4 mm (0.2 gram) lump of ordinary matter, at path separation 4 mm, unless you somehow suppress or actively servo for the cosmological gravitational wave background (assuming there is one!)

PHYSICAL REVIEW A 95, 032112 (2017)

Detecting continuous spontaneous localization with charged bodies in a Paul trap

Ying Li, Andrew M. Steane, Daniel Bedingham, and G. Andrew D. Briggs

"CSL" (Continuous Spontaneous Localization)

- A generalization of the idea of Ghiradi, Rimini,
 Weber (1986), building on Pearle (1976).
- Stochastic nonlinearity in fundamental dynamics.
- Ad-hoc tinkering with Schrodinger's equation ?
 --- No.
- A way of capturing the phenomenological impact of various models of a more general fundamental theory (trace dynamics, gravity, ...)

Diffractive spreading interrupted by spontaneous "collapse"

collapse rate per nucleon λ critical length scale $r_{\rm C}$

decay rate of off-diagonal element of $\rho(\mathbf{r}, \mathbf{r}')$ is

$$\lambda (1 - e^{-|\mathbf{r} - \mathbf{r}'|^2/4r_{\rm C}^2})$$

Ghiradi, Rimini, Weber suggested

$$\lambda \sim 10^{-16} \text{ s}^{-1}$$
 $r_c \sim 10^{-7} \text{ m}$

Density matrix for a blob of matter, in position basis.

Collett and Pearle, Found. Phys 33 (2003); Bassi, Rev. Mod. Phys (2013); Bera *et al*, Scientific reports (2015)

Various experimental approaches

Resonance of a (MEMS) cantilever

Spheres levitated by optical or magnetic forces

Sphere in a Paul trap (this work)

Just hang a sphere by a thread??

... space-based experiment ...

Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac I

(PRL 2011)

Proposal is "two-slit" interference of 40 nm dielectric sphere; Preparation and detection aided by cavity quantum optomechanics

Bahrami, Paternostro, Bassi, Ulbricht (arXiv 2014)

CSL modifies the spectrum of light interacting with radiation-pressure-driven mechanical oscillator.

underlying physics of the method to be presented ...

Our method (following suggestion of Pearle)

- Cold ~1 micron sphere in a weak trap
- Watch it heat up
- Requires v. low noise and v. high vacuum

Heating effect of CSL (in some models)

(At GRW parameters, sphere radius 0.24 micron, 8x10¹¹ nucleons)

How to detect 10 nK?

At 10 nK,

$$k_BT \simeq 200\hbar\omega$$
 and $\Delta x\Delta p \simeq 200\hbar$ at $\omega = 2\pi \times (1 \mathrm{Hz})$

→ We require state preparation and detection at this level.

It is comfortably above standard quantum limit

→ achievable by laser interferometric position measurements

(sphere diameter ~ 0.5 micron)

Poulsen, Miroshnychenko and Drewsen (arXiv 2012) Sub-Hz heating rate at room temperature

We require consider traps similar to this. c.f. Millen *et al.*, PRL 114, 123602 (2015) (Barker, UCL)

electric field noise $S_{\rm E}$ (unit V/m per Hz)

Voltage fluctuations $\left\langle V^2 \right\rangle = d^2 \int_0^\infty S_{\rm E}(\omega) f(\omega) {
m d}\omega$ COM heating rate in the trap $\ \Gamma_{\rm E} = \frac{e^2}{4m} S_{\rm E}(\omega)$ Model: $S_E = \left[\left(b_1 + b_2 V_O^2 \right) d^{-2} + b_3 d^{-4} \right] \omega^{-1}$

- Poulsen et al. achieved Vrms ≈ 200 --700 nV (1 electron at 3.5 mm gives 400 nV)
- we are assuming the SAME noise at the electrode surface
- and 1/f noise spectrum

→heating rate ~ 10 nK/min for trap vibrational frequency of a few Hz

Mechanical vibrations of the trap structure

Active stabilization of optical table by laser interferometry gives 10^{-10} m/ $\sqrt{\rm Hz}$ between 10 mHz and 100 Hz

(state of art is about 10 times better)

Mechanical filters (i.e. spring / pendulum).

Use design study for Virgo experiment:

$$S_x = a_1^2 f^{-5} + a_2^2 (f_0^{20} + f^{20})^{-1} + a_3^2 f^{-1}$$

Stage 2

Stage 0-1
Springs assembly

Stabilization unit in testing at LIGO Hanford

Thermal vibrations in pendulum suspensions;
Seismic vibrations after filtering;

Thermal vibrations of electrode surfaces

Collisions with background gas

The central claim of this paper is that the Paul trap, operated in the parameter regime we have described and with optical detection, offers a sensitivity to heating from CSL that exceeds by many orders of magnitude that which has been predicted for existing proposals.