

GW:UK@Nottingham

Thursday 15 January 2026 - Friday 16 January 2026

University of Nottingham

Book of Abstracts

Contents

10 years of GW - Stephen Fairhurst (Cardiff University)	1
GW astrophysics and multimessenger - Fabio Antonini (Cardiff University)	1
Tests of GR - Michalis Agathos (QMUL)	1
Instrumentation - Ian Wilmut (RAL)	1
Progress in GW cosmology - Tessa Baker (Portsmouth U.)	1
GW searches and parameter estimation - Michael Williams (Portsmouth U.)	1
GW in the UK - Introduction	1
Parallel Panel discussions: Funding for GWs in the UK	1
Parallel Panel discussions: ECR opportunities	2
Group introductions	2
Community Building Exercise	2
Contributed talks	2
Wrap up	2
Machine Learning for Parameter Estimation	2
Residual neural likelihood estimation for gravitational wave parameter estimation	2
Testing general relativity with black hole ringdowns	3
Observability of eccentricity in a population of merging compact binaries	3
Calibrated uncertainty quantification for improved GW signal detection efficiency	3
Gravitational Wave Probes of Dark Matter in Neutron Star Mergers	3
Tidal dissipation in binary neutron star mergers	3
Leveraging indirect observations about merging neutron star binaries	3
Stochastic gravitational wave backgrounds from cosmic phase transitions	3
Polarisation Singularities of Gravitational Waves.	4

Quasinormal modes from numerical relativity with Bayesian inference	4
Accelerating parameter estimation for parameterized tests of general relativity with gravitational-wave observations	4
Astrophysical implications of eccentricity in neutron star-black hole binaries	4
Accelerating Reduced-Order Quadrature Construction using Multi-Band Waveforms	4
What can the future GW detectors tell us about the peak of star formation?	4
Corrections to the energy and angular momentum for eccentric orbits	4
Rapid parameter estimation in minutes with physical insights from eccentric harmonics	5
Extremal Black Hole Spectroscopy	5
Analytic and numerical modeling of boson-star scattering	5
Constraining the luminosity distance-redshift relation with GWs	5
Early Warning in Gravitational-Wave Astronomy with Deep Learning.	5
The potential of hierarchical inference with extreme mass-ratio inspiral observations . .	5
Fast, Faithful, and Future-Proof: Gravitational-Wave Inference at GPU Speed	5
Gravity Spy: Building a Community of Citizen Scientists	6
Detecting Exoplanets beyond Local Super cluster with GW	6
Independent Optical Calibration of Gravitational-Wave Detectors via Scattered Light Injection	6
GW230814: black hole spectroscopy with a single detector binary black hole merger . .	6
Source Inference for Unmodelled Sources	6
The High-Mass-Ratio Challenge in Gravitational-Wave Modelling	6
O4 EM Follow-up Observations with GOTO	6
Application of summary data for Simulation-based inference	6
The Formation and Evolution of EMRIs in Accretion Discs	7
Probing accelerating binary black hole coalescences with deep learning	7
Frequency contamination from new fundamental fields in black hole bringdowns	7
Optimisation of thermal compensation systems in Gravitational wave detectors	7
Stable black hole solutions with cosmological hair	7
An overview of Coatings and Core Optic research in Glasgow	7
Amorphous Alumina: a low absorption material for future detectors	7

He-BAR: A Helium Bulk Acoustic Resonator for Gravitational Wave Detection	8
Multifidelity Approach to Simulation-Based Inference in Gravitational-Wave Data Analysis	8

1

10 years of GW - Stephen Fairhurst (Cardiff University)

2

GW astrophysics and multimessenger - Fabio Antonini (Cardiff University)

3

Tests of GR - Michalis Agathos (QMUL)

4

Instrumentation - Ian Wilmot (RAL)

5

Progress in GW cosmology - Tessa Baker (Portsmouth U.)

6

GW searches and parameter estimation - Michael Williams (Portsmouth U.)

7

GW in the UK - Introduction

8

Parallel Panel discussions: Funding for GWs in the UK**9****Parallel Panel discussions: ECR opportunities****10****Group introductions****11****Community Building Exercise****12****Contributed talks****13****Wrap up****88****Machine Learning for Parameter Estimation****89****Residual neural likelihood estimation for gravitational wave parameter estimation**

90

Testing general relativity with black hole ringdowns

91

Observability of eccentricity in a population of merging compact binaries

92

Calibrated uncertainty quantification for improved GW signal detection efficiency

93

Gravitational Wave Probes of Dark Matter in Neutron Star Mergers

94

Tidal dissipation in binary neutron star mergers

95

Leveraging indirect observations about merging neutron star binaries

96

Stochastic gravitational wave backgrounds from cosmic phase transitions

97

Polarisation Singularities of Gravitational Waves.

98

Quasinormal modes from numerical relativity with Bayesian inference

99

Accelerating parameter estimation for parameterized tests of general relativity with gravitational-wave observations

100

Astrophysical implications of eccentricity in neutron star-black hole binaries

101

Accelerating Reduced-Order Quadrature Construction using Multi-Band Waveforms

102

What can the future GW detectors tell us about the peak of star formation?

103

Corrections to the energy and angular momentum for eccentric orbits

104

Rapid parameter estimation in minutes with physical insights from eccentric harmonics

105

Extremal Black Hole Spectroscopy

106

Analytic and numerical modeling of boson-star scattering

107

Constraining the luminosity distance-redshift relation with GWs

108

Early Warning in Gravitational-Wave Astronomy with Deep Learning.

109

The potential of hierarchical inference with extreme mass-ratio inspiral observations

110

Fast, Faithful, and Future-Proof: Gravitational-Wave Inference at GPU Speed

111

Gravity Spy: Building a Community of Citizen Scientists

112

Detecting Exoplanets beyond Local Super cluster with GW

113

Independent Optical Calibration of Gravitational-Wave Detectors via Scattered Light Injection

115

GW230814: black hole spectroscopy with a single detector binary black hole merger

116

Source Inference for Unmodelled Sources

117

The High–Mass–Ratio Challenge in Gravitational-Wave Modelling

118

O4 EM Follow-up Observations with GOTO

119

Application of summary data for Simulation-based inference

120

The Formation and Evolution of EMRIs in Accretion Discs

121

Probing accelerating binary black hole coalescences with deep learning

122

Frequency contamination from new fundamental fields in black hole bringdowns

123

Optimisation of thermal compensation systems in Gravitational wave detectors

124

Stable black hole solutions with cosmological hair

125

An overview of Coatings and Core Optic research in Glasgow

126

Amorphous Alumina: a low absorption material for future detectors

127

He-BAR: A Helium Bulk Acoustic Resonator for Gravitational Wave Detection

128

Multifidelity Approach to Simulation-Based Inference in Gravitational-Wave Data Analysis

Simulation-based inference (SBI) is opening new possibilities in gravitational-wave data analysis, including the use of computationally expensive simulators to generate waveforms. When simulators are computationally expensive, generating sufficient training data becomes challenging. Multifidelity methods combine the accuracy of high-fidelity (expensive and accurate) models with the computational efficiency of low-fidelity (fast and less accurate) models. This transfer learning approach makes inference tractable even with limited simulation budgets, potentially enabling analyses that would otherwise require prohibitive computational resources.