

Baryon Weak Decays —From Experiments to Lattice QCD

Wednesday, 25 March 2026 - Friday, 27 March 2026

Book of Abstracts

Contents

Study of the $\Lambda \rightarrow p \ell \nu^- \ell$ semileptonic decay in lattice QCD	1
--	---

Study of the $\Lambda \rightarrow p \ell \bar{\nu}_\ell$ semileptonic decay in lattice QCD

Authors: Andreas Konstantinou¹; Simone Bacchio²

¹ *University of Cyprus & The Cyprus Institute*

² *The Cyprus Institute*

We present the first lattice QCD determination of the $\Lambda \rightarrow N$ vector and axial-vector form factors, which are essential inputs for studying the semileptonic decay $\Lambda \rightarrow p \ell \bar{\nu}_\ell$. This channel provides a clean, theoretically controlled avenue for extracting the CKM matrix element $|V_{us}|$ from the baryon sector. Our analysis uses a gauge ensemble with physical light, strange, and charm quark masses and yields the most precise determination to date of the full set of transition form factors—including second-class contributions—as well as the associated couplings, radii, and the ratio of muon-toelectron decay rates, an observable sensitive to possible non-standard scalar and tensor interactions. We compare our non-perturbative results with next-to-next-to-leading order expansions in the small parameter $\delta = (m - m_N)/m \approx 0.16$. We find that the common phenomenological approximation of neglecting the q^2 -dependence of the form factors leads to a $\sim 4\%$ deviation in the decay rate. This underscores the critical importance of precise, fully non-perturbative form factor inputs for achieving the sub-percent precision targets of upcoming experimental programs.