

9th edition of the international CYGNUS Workshop on Directional Recoil Detection

Contribution ID: 34

Type: **not specified**

Directional Search for Light Dark Matter Using Quantum Sensor Technologies

Tuesday, 24 February 2026 16:20 (1 minute)

The search for light dark matter requires detectors capable of sensing extremely small energy deposits while also providing information about the direction of the incoming particles. Quantum sensors offer a promising path toward this goal due to their exceptional sensitivity, low noise characteristics, and ability to measure minute spatial or temporal signals. In this study, we explore a quantum-sensor-based framework for directional dark-matter detection that integrates precision readout, coherent signal amplification, and noise-suppression techniques. We discuss potential detector concepts that can register sub-keV interactions, evaluate directional signatures at low momentum transfer, and operate with scalable arrays for improved sensitivity. Early simulations indicate that quantum-enhanced measurements may enable access to previously unreachable regions of light-dark-matter parameter space. This approach highlights the growing role of quantum technologies in next-generation astroparticle experiments.

Presenter: SINGH, Gurjeet (Department of Physics, Chandigarh University, Gharuan Mohali, 140413, India)

Session Classification: Poster session