Contribution ID: 16 Type: not specified

Running with Radiative Corrections in Deep Inelastic Scattering

Saturday 8 November 2025 15:15 (15 minutes)

The factorization theorem plays an important role in the analysis of high energy quantum chromodynamic (QCD) processes, separating the nonperturbative hadronic interaction into the universal parton distribution functions (PDFs) and fragmentation functions (FFs) and the process-dependent interactions into short distance perturbative calculations, with any interference power suppressed. With a virtual photon exchange, leptonhadron deep inelastic scattering (DIS) provides an electromagnetic hard probe for the partonic structure of colliding hadrons and has played an important role in the development of QCD factorization. However, the collision induced QED radiation can change the momentum of the exchanged but unobserved virtual photon, making the photon-hadron frame, where the factorization formalism for DIS was derived, ill defined. A new analogous factorization approach has been introduced to separate the leading power process-independent QED radiative contributions to the single photon exchange by introducing lepton distribution functions (LDFs) and lepton fragmentation functions (LFFs), while process-dependent effects are perturbatively calculated with large logarithms removed [J. High Energ. Phys. 2021, 157 (2021)]. These LDFs and LFFs are considered global, as they appear in many different interactions, such as e^+e^- , DIS and SIDIS, so data from experiments can be used to fit and describe these functions across a wide range of lepton scattering. In this work, I will apply this new hybrid factorization approach to lepton-hadron DIS and illustrate an new mechanism to constrain the running of $\alpha_{\rm EM}(Q^2)$.

Author: CAMMAROTA, Justin (University of Kentucky)

Co-author: GARDNER, Susan (University of Kentucky)

Presenter: CAMMAROTA, Justin (University of Kentucky)

Session Classification: Regular Sessions