V Simpósio do INCT-FNA

Contribution ID: 39 Type: Paralela

Electromagnetic Field Effects on Hydrodynamic Simulations

Thursday 4 December 2025 15:20 (20 minutes)

The ultrarelativistic motion of charges in heavy-ion collisions is responsible for generating extreme electromagnetic fields, with magnetic fields of the order of 10^{18} G (for RHIC energies). However, the fields are very short-lived and their effects on the dynamics of the hot and dense matter produced in the collision are not well understood. In this work, we use a hybrid simulation chain, to investigate the effects that the electromagnetic field generated by the charged participants and the charged fluid on the hydrodynamic evolution itself. The initial conditions for the energy–momentum tensor are constructed using the AMPT model [2, 3], while the electromagnetic field is obtained by separating the contribution from the spectators, calculated analytically, from that generated by the fluid [4], where the net electric four-current is determined from the divergence of the fluid electromagnetic tensor. The evolution of the fluid is solved using a newly developed 3+1D hydrodynamic code. The effects of the magnetic field produced by the fluid are studied using a relativistic resistive magnetohydrodynamics approach.

- 1. D. E. Kharzeev, L. D. McLerran, H. J. Warringa, "The effects of topological charge change in heavy ion collisions: 'Event by event P and CP violation', "Nuclear Physics A, 803, 227-253 (2008).
- B. Zhang, C. M. Ko, B.-A. Li, Z. Lin, "Multiphase transport model for relativistic nuclear collisions," Phys. Rev. C, 61, 067901 (2000).
- 3. B. Fu, K. Xu, X.-G. Huang, H. Song, "Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions," Phys. Rev. C, 103, 024903 (2021).
- U. Gursoy, D. Kharzeev, K. Rajagopal, "Magnetohydrodynamics, charged currents, and directed flow in heavy ion collisions," Phys. Rev. C 89, 054905 – Published 13 May, 2014

Altas energias

Presenter: FRANÇÃO, Vinícius

Session Classification: Altas Energias