CPAD 2025 at Penn

Contribution ID: 145 Type: Parallel session talk

α , β pulse shape discrimination in silicon detectors

Wednesday 8 October 2025 11:20 (20 minutes)

The Beta-decay Paul Trap (BPT) at Argonne National Laboratory primarily studies the beta delayed-alpha decays of $^8\mathrm{Li}$ and $^8\mathrm{B}$ to measure the beta-neutrino angular correlation coefficient in these decays to search for a tensor contribution to the weak interaction. Additionally, the BPT is able to directly measure the $^8\mathrm{B}$ unoscillated neutrino spectrum, an important input for current and next generation solar neutrino detectors. The BPT uses four, 1 mm thick double-sided silicon strip detectors for 25% solid angle coverage with angular resolution of $\sim 2^\circ$, which sample the β energy due to their thickness. One present experimental limitation is the lack of discrimination between α and β particles below ~ 1 MeV, a portion of the energy spectrum which has a large impact on the reconstruction of the $^8\mathrm{B}$ neutrino spectrum. To overcome this limitation, we investigate using pulse shape discrimination to distinguish between α and β particles in thick silicon detectors, with promising performance under both simple approaches and more complex machine learning techniques.

Authors: KUNEN, Isaac (University of Washington); NAVE, Christian (University of Washington); TSCHIRHART,

Forest (University of Washington); VARRIANO, Louis (University of Washington)

Presenter: VARRIANO, Louis (University of Washington)Session Classification: RDC 3 Solid State Tracking

Track Classification: RDC 3 Solid State Tracking