Contribution ID: 69 Type: Oral

Radial flow via $v_0(p_{\mathrm{T}})$ in heavy-ion collisions at LHC energies

Saturday 6 September 2025 10:10 (20 minutes)

The transverse momentum dependent observable $v_0(p_{\rm T})$ has recently emerged as a novel probe of radial expansion in high-energy heavy-ion collisions. Using Pb—Pb collision data at $\sqrt{s_{\rm NN}}=5.02$ TeV recorded with the ALICE detector, measurements of $v_0(p_{\rm T})$ for pions, kaons, and protons are performed across a broad range of collision centralities. A pseudorapidity gap technique is employed to suppress short-range nonflow correlations and isolate collective dynamics. The results reveal clear mass ordering at low p_T and baryon-meson separation at higher $p_{\rm T}$, reflecting hydrodynamic expansion and hadronization via quark recombination. Comparative modeling with a blast-wave framework, including event-by-event fluctuations of radial flow velocity and freeze-out temperature, shows consistency with parameters extracted from transverse momentum spectra. Moreover, the sensitivity of $v_0(p_{\rm T})$ to bulk-viscosity effects and the underlying equation of state highlights its potential as a complementary observable for constraining the transport properties and freeze-out dynamics of the quark—gluon plasma.

Author: Ms SAHA, Swati (National Institute of Science Education and Research (NISER))

Presenter: Ms SAHA, Swati (National Institute of Science Education and Research (NISER))

Session Classification: Plenary Session