Contribution ID: 28 Type: Oral

Mass Predictions for Ω_{bc} and $\Omega_{bc}^{'}$ Baryons in a Quark–Diquark Rotating String Picture

Friday 5 September 2025 15:45 (15 minutes)

We present a detailed study of the mass spectra of the bottom–charm baryons (Ω_{bc} and Ω'_{bc}) within a quark–diquark rotating string framework. This model treats each Ω_{bc} and Ω'_{bc} baryon as a b–c diquark core bound to a strange quark via a relativistic rotating string (flux tube), and it includes spin-dependent interactions to capture fine spectral details. Using this approach, we compute the masses of the ground and the excited states of the Ω_{bc} and Ω'_{bc} baryons. The predicted masses for the ground-state Ω_{bc} and Ω'_{bc} show close agreement with previous theoretical estimates, lending credibility to the approach. Furthermore, we provide predictions for a broad range of radially and orbitally excited Ω_{bc} and Ω'_{bc} states. These theoretical predictions serve as valuable benchmarks for ongoing experimental efforts, offering a crucial reference point for guiding their potential observation.

Author: JAKHAD, Pooja

Co-author: Dr RAI, Ajay Kumar (Sardar vallabhbhai National Institute of Technology-Surat)

Presenter: JAKHAD, Pooja

Session Classification: Parallel Session