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Statistical Methods

in High Energy Physics -1 
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• Probability

• Random variables, probability densities

• Probability densities in HEP

• Parameter estimation, hypothesis tests

• Maximum likelihood and least squares

Ref: Detection and Estimation Theory by Van Trees; 

Statistical data analysis by Cowan

Outline
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Data analysis in particle physics 

Observe events of a certain type

Measure characteristics of each event (particle momenta,

number of muons, energy of jets,...)

Theories (e.g. SM) predict distributions of these properties

up to free parameters, e.g., a, GF, MZ, as, mH, ...

Some tasks of data analysis:

Estimate (measure) the parameters;

Quantify the uncertainty of the parameter estimates;

Test the extent to which the predictions of a theory are 

in agreement with the data (→ presence of New Physics?)
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Definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov

axioms (1933)

From these axioms we can derive further properties, e.g.
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Conditional probability, independence

Also define conditional probability of A given B (with P(B) ≠ 0):

E.g. rolling dice:

Subsets A, B independent if:

If A, B independent,

do not confuse with disjoint subsets, i.e.,
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Interpretation of probability

I. Relative frequency

A, B, ... are outcomes of a repeatable experiment 

quantum mechanics, particle scattering, radioactive decay...

II. Subjective probability (Bayesian)

A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.

• In particle physics  frequency interpretation often most useful,

but subjective probability can provide more natural treatment of 

non-repeatable phenomena.
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Bayes’ theorem
From the definition of conditional probability we have,

and

but , so

Bayes’ theorem

First published (posthumously) by the

Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the

doctrine of chances, Philos. Trans. R. Soc. 53

(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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The law of total probability

Consider a subset B of 

the sample space S,

B ∩ Ai

Ai

B

S

divided into disjoint subsets Ai

such that ∪i Ai = S,

→

→

→ law of total probability

Bayes’ theorem becomes
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Bayesian Statistics − general philosophy 

In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 

after seeing the data

prior probability, i.e.,

before seeing the data

probability of the data assuming 

hypothesis H (the likelihood)

normalization involves sum 

over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior

probabilities were p (H), then it says how these probabilities

should change in the light of the data.

No unique prescription for priors (subjective!)
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An example using Bayes’ theorem

Suppose the probability (for anyone) to have a disease D is:

← prior probabilities, i.e.,

before any test carried out

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly

identify a person with the disease

← probabilities to (in)correctly

identify a healthy person

Suppose your result is +.  How worried should you be?
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Bayes’ theorem example (cont.)

The probability to have the disease given a + result is

i.e. you’re probably OK!

Your viewpoint:  my degree of belief that I have the disease is 3.2%.

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability
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Random variables and probability density functions

A random variable is a numerical characteristic assigned to an 

element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x

→ f(x) = probability density function (pdf)

Or for discrete outcome xi with e.g. i = 1, 2, ... we have

x must be somewhere

probability mass function

x must take on one of its possible values
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Cumulative distribution function

Probability to have outcome less than or equal to x is

cumulative distribution function

Alternatively define pdf with
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Other types of probability densities

Outcome of experiment characterized by several values, 

e.g. an n-component vector, (x1, ... xn) 

Sometimes we want only pdf of some (or one) of the components

→ marginal pdf

→ joint pdf

Sometimes we want to consider some components as constant

→ conditional pdf

x1, x2 independent if 
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Expectation values

Consider continuous r.v. x with pdf  f (x).  

Define expectation (mean) value as

Notation (often):                         ~ “centre of gravity” of pdf. 

For a function y(x) with pdf g(y), 

(equivalent)

Variance:

Notation:

Standard deviation:

s ~ width of pdf, same units as x.
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Covariance and correlation

Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, ‘uncorrelated’

- converse not always true.
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Correlation (cont.) 
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Distribution/pdf Use in HEP

Binomial Branching ratio

Multinomial Histogram with fixed N

Poisson Number of events

Uniform Monte Carlo method

Exponential Decay time

Gaussian Measurement error

Chi-square Goodness-of-fit

Cauchy Mass of resonance

Landau Ionization energy loss
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each is ‘success’ or ‘failure’,

probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 

probability for n is sum of probabilities for each permutation.
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Binomial distribution  (2)

The binomial distribution is therefore

random

variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)

Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 

W→mn is a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,

n2 of outcome 2,



nm of outcome m.

This is the multinomial distribution for
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Multinomial distribution (2)

Now consider outcome i as ‘success’, all others as ‘failure’.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution

Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events

n with cross section s found for a fixed

integrated luminosity, with
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Uniform distribution

Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is:

For any r.v. x with cumulative distribution F(x),

y = F(x) is uniform in [0,1].

Example:  for p0 → gg, Eg is uniform in [Emin, Emax], with

2
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Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

Example:  proper decay time t of an unstable particle

(t = mean lifetime)

Lack of memory (unique to exponential):
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:

Special case: m = 0, s2 = 1   (‘standard Gaussian’):

(often m, s2 denote

mean, variance of any

r.v., not only Gaussian.)

If y ~ Gaussian with m, s2, then  x = (y - m) /s follows  (x).
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random

variable that is a sum of a large number of small contributions

follows it.  This follows from the Central Limit Theorem:

For n independent r.v.s xi with finite variances si
2, otherwise

arbitrary pdfs, consider the sum

Measurement errors are often the sum of many contributions, so 

frequently measured values can be treated as Gaussian r.v.s.

In the limit n → ∞, y is a Gaussian r.v. with
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Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

For n = 2 this is

where r = cov[x1, x2]/(s1s2) is the correlation coefficient.
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Chi-square (c2) distribution

The chi-square pdf for the continuous r.v. z (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of

freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means mi, variances si
2,

follows c2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction

with method of least squares.
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Landau distribution

For a charged particle with b = v /c traversing a layer of matter

of thickness d, the energy loss D follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also

W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + -

- + - +
b

d

D
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Parameter estimation

The parameters of a pdf are constants that characterize

its shape, e.g.

random variable

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 

parameter(s):

← estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;

‘estimate’ for the value of the estimator with a particular data set.



Maximum Likelihood Estimator

42



43



44



45



46



47



48



49



50

What it is:  a numerical technique for calculating probabilities

and related quantities using sequences of random numbers.

The usual steps:

(1) Generate sequence r1, r2, ..., rm uniform in [0, 1].

(2) Use this to produce another sequence x1, x2, ..., xn

distributed according to some pdf  f (x)  in which

we’re interested (x can be a vector).

(3) Use the x values to estimate some property of  f (x), e.g.,

fraction of x values with a < x < b gives

→ MC calculation = integration (at least formally)

MC generated values = ‘simulated data’

→ use for testing statistical procedures

The Monte Carlo method


