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Data analysis in particle physics

Ql
q

& . Observe events of a certain type

A\

1\

Measure characteristics of each event (particle momenta,
number of muons, energy of jets,...)

Theories (e.g. SM) predict distributions of these properties
up to free parameters, e.g., a, Gg, M, «, m, ...
Some tasks of data analysis:

Estimate (measure) the parameters;

Quantify the uncertainty of the parameter estimates;

Test the extent to which the predictions of a theory are
In agreement with the data (— presence of New Physics?)



Definition of probability

Consider a set S with subsets A, B, ...

Forall Ac S,P(A) >0

P& =1 Kolmogorov

If ANB=0,P(AUB) = P(A) + P(B) axioms (1933)

From these axioms we can derive further properties, e.g.

P(A)=1—- P(A)

P(AUA)=1

P(®) =0

if AC B, then P(A) < P(B)
P(AUB)=P(A)+ P(B)— P(ANB)



Conditional probability, independence

Also define conditional probability of A given B (with P(B) # 0):

P(ANB)

P(A|B) = (B

E.g. rolling dice: P(n < 3|neven) = P((n;:(’)(gvl’;n’r)beven) = :1))7/2 =

Wl

Subsets A, B independent if: P(AnN B) = P(A)P(DB)

P(A)P(B)

If A, B independent, P(A|B) = P(B)

— P(A)

do not confuse with disjoint subsets, I.e., ANB =10



Interpretation of probability

|. Relative frequency
A, B, ... are outcomes of a repeatable experiment

P(A) — Iim times outcome is A

n—0C n

gquantum mechanics, particle scattering, radioactive decay...

[I. Subjective probability (Bayesian)
A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of belief that A is true

 Both interpretations consistent with Kolmogorov axioms.

* In particle physics frequency interpretation often most useful,
but subjective probability can provide more natural treatment of
non-repeatable phenomena.



Bayes’ theorem
From the definition of conditional probability we have,

P(A|B) = P(PA(;)B) and P(B|A) = P(If’a)“l)
but P(ANB)=P(BNA),so

P(B|A)P(A) Bayes’ theorem

P(A|B) = (B

First published (posthumously) by the
Reverend Thomas Bayes (1702—1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.



The law of total probability B

Consider a subset B of
the sample space S, S 9

divided into disjoint subsets A, i
such that U; A, = S,

— B=BnNS=BnNUA;) =U;(BNA),;),
— P(B) =P(Ui(BNA;))=2>; P(BNA;)
— P(B) =3,;,P(B|A;)P(A4;) law of total probability

P(B|A)P(A)

Bayes’ theorem becomes | P(A|B) =
>_i P(B|A;) P(A;)




Bayesian Statistics — general philosophy

In Bayesian statistics, use subjective probability for hypotheses:

probability of the data assuming
hypothesis H (the likelihood) N /

. PEH)r(H)
/,P(H| ) = [ P(Z|H)n(H)dH

posterior probability, I.e., \ normalization involves sum
after seeing the data over all possible hypotheses

prior probability, i.e.,
before seeing the data

Bayes’ theorem has an “if-then” character: If your prior
probabilities were 7 (H), then it says how these probabilities
should change in the light of the data.

No unique prescription for priors (subjective!)
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An example using Bayes’ theorem
Suppose the probability (for anyone) to have a disease D is:

P(D) = 0.001 < prior probabilities, i.e.,
PoD) = 0.999 before any test carried out
Consider a test for the disease: result is + or —

P(+D) = 0.98 « probabilities to (in)correctly

P(—|D) = 0.02 Identify a person with the disease
P(+no D) = 0.03 — probabilities to (in)correctly
P(—lnoD) = 097 Identify a healthy person

Suppose your result is +. How worried should you be?

11



Bayes’ theorem example (cont.)

The probability to have the disease given a + result is

P(+|D)P(D)
P(+|D)P(D) 4+ P(+|no D)P(no D)

p(Dl+) =

0.98 x 0.001
0.98 x 0.001 + 0.03 x 0.999

— 0.032 <« posterior probability

1.e. you’re probably OK!
Your viewpoint: my degree of belief that | have the disease is 3.2%.

Your doctor’s viewpoint: 3.2% of people like this have the disease.
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Random variables and probability density functions

A random variable is a numerical characteristic assigned to an
element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x
P(x found in [z, + dx]) = f(x) dx
— f(x) = probability density function (pdf)

/OO f(x)de =1 X must be somewhere
>0

Or for discrete outcome x; with e.g. 1 =1, 2, ... we have
P(x;) = p; probability mass function

Z P(xz;)) =1 X must take on one of its possible values
0

13



Cumulative distribution function

Probability to have outcome less than or equal to x Is

/w f(z") de' = F(2) cumulative distribution function
— 0
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Alternatively define pdf with f(z) = p
L




Other types of probability densities

Outcome of experiment characterized by several values,
e.g. an n-component vector, (X, ... X))

— jointpdf f(z1,...,2n)

Sometimes we want only pdf of some (or one) of the components
—, marginal pdf f1(z1) = /---/f(a:l,...,:cn) dvo . . . dan

X1, X independent if f(z1,22) = f1(z1) fo(x2)

Sometimes we want to consider some components as constant

f(z1,22)
fo(z2)

— conditional pdf  g(x1]zo) =

15



Expectation values

Consider continuous r.v. x with pdf f (x).

Define expectation (mean) valueas FE[x] = / x f(x)dx
Notation (often): FE[x] = u ~ “centre of gravity” of pdf.
For a function y(x) with pdf g(y),

Byl = [yg()dy = [y(@)f(x)do  (equivalent)

Variance: V[z] = E[z°] — u° = E[(z — 1)?]
Notation: V[z] = o2
Standard deviation: o =V o2

o ~ width of pdf, same units as x. !

16



Covariance and correlation

Define covariance cov[x,y] (also use matrix notation V,,) as
covlz,y] = Elzy] — papy = El(z — pe)(y — py)]

Correlation coefficient (dimensionless) defined as

cov|x, y]

Pxy —
O'gjo'y

If X, y, independent, i.e., f(x,y) = fz(z)fy(y), then
Elzy] = //:By f(z,y) dedy = papy
— cov|z,y] =0 X and y, ‘uncorrelated’

- converse not always true.
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Correlation (cont.)
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p = —0.75

p = 0.25
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Covariance matrix

Suppose we have a set of n random variables, say, x,..., x,,.

We can write the covariance of each pair as an n x n matrix:

Vij = covix;, x| = pijoi0;

2
/ 01 pP120102 ... Pin010n \
) Covariance matrix is:
pP210201 %) co. P2n020p ,
symmetric,

V = : :
diagonal = variances,
positive semi-definite:

, 2TVz >0 for all z € R"
\ Pn10n01 Pn20,02 ... g, /
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Correlation matrix

Closely related to the covariance matrix is the n x n matrix of

correlation coefficients:

Pij =

( 1

P21

cov|z;, z;]

0i0;

P12

\ Pn1  Pn2

Pin \

P2n

1)

By construction, diagonal
elements are p; =1
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Distribution/pdf

Use in HEP

Binomial
Multinomial
Poisson
Uniform
Exponential
Gaussian
Chi-square
Cauchy
Landau

Branching ratio
Histogram with fixed N
Number of events
Monte Carlo method
Decay time
Measurement error
Goodness-of-fit

Mass of resonance
lonization energy loss
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each 1s ‘success’ or ‘failure’,
probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 <n < N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ 1s
pp(1 —p)p(1 —p) = p"(1 —p)V "
N

n!(N —n)!

But order not important; there are

ways (permutations) to get n successes in N trials, total

probability for n Is sum of probabilities for each permutation.
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Binomial distribution (2)

The binomial distribution is therefore

N
,N — n 1 L N—n
f/(n ’f)\) (N — ! P
random parameters

variable

For the expectation value and variance we find:

N
E[ln] = ) nf(n;N,p) = Np

n=0

VIn] = E[n?] — (E[n])? = Np(1 — p)

23



Binomial distribution (3)

Binomial distribution for several values of the parameters:

04
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Example: observe N decays of W=, the number n of which are
W—upv is a binomial r.v., p = branching ratio.

24



Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

mm
=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n., of outcome m.

This is the multinomial distribution for 7 = (nq,...,nm)
S, i N
f(; N, p) = PP o

nilnol---nm

25



Multinomial distribution (2)

Now consider outcome 1 as ‘success’, all others as ‘failure’.

— all n; individually binomial with parameters N, p:
E[n;] = Np;, VIn;] = Np;(1 —p;) foralli
One can also find the covariance to be
Vii = Np;(;; — p;)

Example: 7@ = (nq1,...,nm) representsa histogram

with m bins, N total entries, all entries independent.
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Poisson distribution
Consider binomial n in the limit

N — o0, p — 0O,

— n follows the Poisson distribution:

f(n;v) = Z—T:e_y (n>0)

Enl=v, Vn]l=v.

Example: number of scattering events
n with cross section o found for a fixed
Integrated luminosity, with v = o [ L dt.

Elnl = Np—v.

y=2

0 5 10 15

20

20
v=5
HHHHHHH L
0 5 10 15
v=10
o
0 5 10 15
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Uniform distribution

Consider a continuous r.v. X with —eo < x < oo . Uniform pdfis:

O
0

fi(x;o,B)

otherwise

Elz] = S(a+ 8)

2

Vie] = (8- a)

For any r.v. x with cumulative distribution F(x),
y = F(x) is uniform in [0,1].

Example: for n° — vy, E_ is uniform in [E,;, E ., With

Bmin = 5Bx(1 =), Emax = 5Ex(1 + 6)

28



Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

@ 1
e/t g>0 & g
f(z; &) = N “2:2
0 otherwise 06 | -
E[x] _ é‘ 0.4 ;3
2 02 [ X
Viz] =¢ T
0 5 . 5 3 4 5

Example: proper decay time t of an unstable particle

Ftr) = Let/T  (z=mean lifetime)
T

Lack of memory (unique to exponential): f(t — tg|t > tg) = f(¢)



Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:

. L G202}
T, M, o) = e = 06
f(x; p, o) S =

Elz] =p  (often 4, o® denote
mean, variance of any 02 |
Viz] = o2 IV, notonly Gaussian.)

-

o
i

p ==

Special case: =0, 0>=1 (‘standard Gaussian’):

\/12_7T€_$2/2 , D(x) = f_xoo o(z") da’

p(r) =

If y ~ Gaussian with z, o?, then x = (y — 1) /o follows ¢ (X).
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that is a sum of a large number of small contributions
follows it. This follows from the Central Limit Theorem:

For n independent r.v.s x; with finite variances %, otherwise
arbitrary pdfs, consider the sum

n
y= )
i=1
In the limit n — oo, y is a Gaussian r.v. with

Elyl = > wi Viyl = Y o?
i=1 i=1

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.
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Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector# = (x1,...,2n)
F@ERV) = e exp | -2 (@ - DTV HE - )
| (2m)n/2|V |1/ 2

Z, i are column vectors, @', ! are transpose (row) vectors,

Elz;] = pi, . covlz;,xz;] =V .

Forn=2thisis
1

f(z1,22,; p1, u2,01,02,p) =
2roio0v/1 — p?
1 vy —p1)° r2 — p2\” r] — p1\ (T2 — p2
X exp s — — 2
p{ 2(1—02)[( o1 )+( 02 ) p( o1 )( o2 )]}

where p = cov[x,, X,]/(o,0,) Is the correlation coefficient.
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Chi-square (?) distribution

The chi-square pdf for the continuous r.v. z (z > 0) is defined by

1 TL/2—1 —2/2 = 03 :
© - = — Rr="
f( ) 2n/2|—(n/2) = . -
n=1,2,..= number of ‘degrees of B . A= 10
freedom’ (dof) 62 | |
Elzl] =n, V][z]=2n. 'O | e

0 5 10 15 20

For independent Gaussian x;, i = 1, ..., n, means x;, variances %,

N )2
=D (i 02“1) follows »? pdf with n dof.
i=1 i
Example: goodness-of-fit test variable especially in conjunction
with method of least squares.
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Landau distribution

For a charged particle with g =v /c traversing a layer of matter
of thickness d, the energy loss A follows the Landau pdf:

1 A
f IB +—+- R
b(N) = 1/000 exp(—ulnu — Au) sin rudu |
— d =
N AT
= Hace(ngaiome)].
_ 27Nae*2?p> Z d ,  I?expp?
§= mec2S A (2 ° 2mec2(32~y2

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.
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Example: decay of an unstable particle

As an example that we’ll use to illustrate several statistical
methods, consider measuring the proper decay time of an
unstable particle such as a B meson:

R. Barate et al./ Physics Letters B 492 (2000) 259-274

Measure flight distance d and
momentum p of decay products

of B meson with mass my;.

These are related to the proper
decay time 7, (time in B rest
frame) by

d = vt = Be X Ylp = p—Btp
mp
mgd
SO t, = ——
PB

35



Exponential pdf for proper decay time

We can model ¢ as following an exponential pdf:

1.0
— 1=1
T=2
1 0.8 =1
fEr)y==eM",  t>0
T T HU.G'
" X
e e parameter 0.4/
variable
0.2
0.0 - - - -
0 1 2 3 4 5

t

We can show (exercise) that the mean and variance of ¢ are:

Elt] = /Om tf(t;r)dt =7 Vit] = E[t?] — (E[f])* =

36



Frequentist hypothesis tests

Suppose a measurement produces data x; consider a hypothesis H,,
we want to test and alternative H,

H,, H, specify probability for x: P(x|H,), P(x|H,)

A test of H,, is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
o, assuming H, is correct, to observe the data there, i.e.,

Px€w|Hy)<a data space Q

Need inequality if data are

discrete.

o, is called the size or

significance level of the test. @
If x is observed in the

\

critical region, reject H,,. critical region w

37



Definition of a test (2)

But in general there are an infinite number of possible critical
regions that give the same size «.

Use the alternative hypothesis H, to motivate where to place the
critical region.

Roughly speaking, place the critical region where there is a low
probability () to be found if H, is true, but high if A, is true:

BELCILA $(x\H,) [ W

Powe\' U-r'r*’ H‘ )
M (H,)

. x
stze A
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Example of a test for classification

5
Suppose we can measure for —— signal
each event a quantity x, where =~ 4] — background
31 Xc
f(xls) =2(1 —x) = .
2_
f(xb) = 42 i
1 a
with0<x < 1.

Y0 02 04 06 08 Lo
X

For each event in a mixture of signal (s) and background (b) test

H,:eventisof typeb

using a critical region W of the form: W= {x :x<x_.}, where

X. is a constant that we choose to give a test with the desired size a.
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Classification example (2)

Suppose we want a = 10~4.  Require:

a= Plx < x:|b) = /xcf(:13|b)d:r:— - | =@
0

and therefore z. = /4 — 0.1

For this test (i.e. this critical region W), the power with respect
to the signal hypothesis (s) is

M = P(x < x¢|s) —/ f(z|s) de = 2zc — 22 = 0.19
0

Note: the optimal size and power is a separate question that will

depend on goals of the subsequent analysis.
40



Parameter estimation

The parameters of a pdf are constants that characterize

Its shape, e.g.
’ 1

f(x;0) = Ee_m/g

random variable parameter

Suppose we have a sample of observed values: ¥ = (z1,...,zn)

We want to find some function of the data to estimate the
parameter(s):

0(z) <« estimator written with a hat

Sometimes we say ‘estimator’ for the function of Xy, ..., X;;;
‘estimate’ for the value of the estimator with a particular data set.
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Maximum Likelithood Estimator

The likelihood function fori.i.d.* data

*i.i.d. = independent and identically distributed

Consider n independent observations of x: xy, ..., x,, where
x follows f(x; ). The joint pdf for the whole data sample is:

f(@1,. . an; 0) = [ f(z4;0)
=1

In this case the likelihood function is

L(6) = ﬁ f(z;:0) (x; constant)

1=1

42



Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

. best
q(6;0)

large
variance

/\' biased
\o—

We want small (or zero) bias (systematic error): b= E[0] — 6

— average of repeated measurements should tend to true value.

And we want a small variance (statistical error): V[0]

— small bias & variance are in general conflicting criteria
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Maximum Likelihood Estimators (MLEs)

We define the maximum likelihood estimators or MLEs to be
the parameter values for which the likelihood is maximum.

Maximizing L L“ L
equivalent to —
maximizing log L

o~

0 = argmax L(6) *
0

A
B
Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but
in practice they’re very good).
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MLE example: parameter of exponential pdf

Consider exponential pdf,  f(¢;7) = le—t/"’
-

and suppose we have i.i.d. data, t1,...,tn

i1’
The likelihood functionis L(7) = H le—ti/'r

=1

The value of 7 for which L(7) is maximum also gives the

maximum value of its logarithm (the log-likelihood function):

INL(T) =Y _ Inf(ty) = > (In1 — @)
i=1

T T

1 =1
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MLE example: parameter of exponential pdf (2)

Find its maximum by setting 0ln L(r) =0,
ot
1 T
. Z L 1
TL

f®

=1

0.75 F
Monte Carlo test:

generate 50 values
using 7= 1I:

05

025

We find the ML estimate:

om0 1]
T+ =1.062 0 1 2 3 4 5




MLE example: parameter of exponential pdf (3)

For the exponential distribution one has for mean, variance:

E[t] =/ t Lot/ dt =7
0

T

> 2 1 —t/T 2
Vit] = (t—71)"—e "Tdt=T
0

T

1 X :
Forthe MLE 7= =) t; we therefore find
n

=1

1 1 —
EF=E|=N"t.|==N"E[t;] = b=E[+]—7 =0
M=k || = B =7 —> b=l

. - 1 « T2 T
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Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the

variance of any estimator (not only ML): . ,
/ Minimum Variance

I 2 921n L Bound (MVB)
vz (14+5) /5 [_W] (b= E() - )

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit). Then,

82In L
V[é’]m—l/E[ 502 ]

Estimate this using the 2nd derivative of In L at its maximum:

_ 82InL\ "
V[m=_< 062 )

-

0=0
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MVB for MLE of exponential parameter

. b\ 9%In L
Find MVB—(I-I—g) /E[ 672]

.1 &
We found for the exponential parameter the MLE 7 = — Z t;
ni=1

and we showed b = 0, hence db/dt = 0.

) 82 In L - 1 2?5?;
We find 5.2 = Z (ﬁ - ﬁ)

=1

’
T T2

0%1n L n
or | 72

and since E[t;]=17 foralli, FE {

2
and therefore MVB = % =VI[f]  (Here MLE is “efficient”).
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The Monte Carlo method

What it is: a numerical technigue for calculating probabilities
and related guantities using sequences of random numbers.

The usual steps: 9(r)

(1) Generate sequence ry, I,, ..., r uniformin [0, 1].

(2) Use this to produce another sequence Xy, Xy, ..., X,  ° 1
distributed according to some pdf f (x) in which
we’re interested (X can be a vector).

(3) Use the x values to estimate some property of f (x), e.g.,
fraction of x values with a < x < b gives [° f(z) dx .

— MC calculation = integration (at least formally)

MC generated values = ‘simulated data’
— use for testing statistical procedures
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