

Contribution ID: 63 Type: Talk

Understanding the spin-spin interactions among heavy quarks at finite temperature

Tuesday 4 November 2025 15:10 (20 minutes)

In this work we calculate the non-perturbative potential between a heavy quark and an anti-quark pair in a QCD plasma at finite temperature. Extracting the leading order static potential $V_s(r)$ from the temporal Wilson line correlators we then calculate the spin dependent component $V_{ss}(r)$ at $\mathcal{O}(1/M^2)$, using color-magnetic field insertions. The computations have been performed for quenched QCD, at 1.2, 1.5 times the deconfinement temperature T_d , on a 4D lattice

with spacing a=0.026 fm, spatial extent $N_s=68$ and temporal size $N_\tau=16,20$ and compared with a zero temperature calculation at $\approx 0.25~T_d$, on a 32^4 lattice. We show that $V_{ss}(r)$ develops an imaginary part at finite temperature, a similar phenomenon observed in the static potential. Reconstructing the quarkonium spectral functions for both pseudo-scalar and vector channels using the spin-dependent non-perturbative potential we observe different decay widths of these states. We discuss the physical implications of our study for understanding the melting of quarkonium bound states in the quark-gluon plasma.

Parallel Session (for talks only)

QCD at nonzero temperature and density

Author: TAH, Swagatam (The Institute of Mathematical Sciences)

Co-authors: BALA, Dibyendu (Bielefeld University); Dr KACZMAREK, Olaf (Bielefeld University); Dr SHARMA, Sayantan (The Institute of Mathematical Sciences)

Sayantan (The mistitute of Mathematical Sciences)

Presenter: TAH, Swagatam (The Institute of Mathematical Sciences)

Session Classification: QCD at nonzero temperature and density