Contribution ID: 33 Type: Poster

Quark-Lepton Families and Irreducible Anomaly-Free Sets in Flipped Trinification

Thursday 4 December 2025 18:47 (1 minute)

We develop a model-independent framework to construct $\mathbf{quark-lepton}$ families in flipped trinification, $SU(3)_C \times SU(3)_L \times SU(3)_R \times U(1)_X$, for arbitrary charge embedding. The approach identifies and classifies $\mathbf{Irreducible}$ Anomaly-Free Sets (\mathbf{IAFS}) —minimal fermion multiplet combinations that cancel, by themselves, all gauge and mixed anomalies: $[SU(3)_{L,R}]^3$, $[SU(3)_{L,R}]^2U(1)_X$, $[SU(3)_C]^2U(1)_X$, $U(1)_X^3$, and $\operatorname{grav}^2U(1)_X$. We show how Standard-Model families arise as unions of a small number of IAFS and derive general constraints relating family replication to color, recovering well-known 331-like non-universality as a limiting case. For each IAFS we provide electroweak-viable charge assignments, discuss the scalar content needed for the sequential breaking $SU(3)_L \times SU(3)_R \times U(1)_X \to SU(2)_L \times U(1)_Y$, and outline renormalizable Yukawa structures that generate realistic quark and lepton masses (including right-handed neutrinos) while controlling exotic states. The classification maps directly onto phenomenology, predicting patterns for extra neutral currents (Z'/Z''), exotic quark/lepton charges, residual discrete symmetries, and typical flavor textures. Our results provide a modular "building-block" toolkit to engineer flipped-trinification models from $\mathbf{quark-lepton}$ families and their $\mathbf{irreducible}$ anomaly-free combinations, clarifying which embeddings remain compatible with current collider and flavor constraints.

Author: Prof. GIRALDO USUGA, Yithsbey (Universidad de Nariño)

Co-authors: Prof. ROJAS, Eduardo (Universidad de Nariño.); Dr BENAVIDES, Richard (Instituto Tecnológico

Metropolitano, ITM)

Presenter: Prof. GIRALDO USUGA, Yithsbey (Universidad de Nariño)

Session Classification: Posters