

GW250114 reveals black hole horizon signatures

Saturday, 1 November 2025 15:50 (15 minutes)

The horizon of a black hole, the “surface of no return,” is characterized by its rotation frequency Ω_H and surface gravity κ . A striking signature is that any infalling object appears to orbit at Ω_H due to frame dragging, while its emitted signals decay exponentially at a rate set by κ as a consequence of gravitational redshift. Recent theoretical work predicts that the merger phase of gravitational waves from binary black hole coalescences carries direct imprints of the remnant horizon’s properties, via a “direct wave” component that (i) oscillates near $2\Omega_H$, reflecting the horizon’s frame dragging and the quadrupole nature of the gravitational radiation, and (ii) decays at an increasing rate characterized by κ , with additional screening from the black hole’s potential barrier. In this paper, we report observational evidence for the direct wave in GW250114 with a matched-filter signal-to-noise ratio of $14.0_{-0.1}^{+0.2}$ ($13.5_{-0.2}^{+0.1}$) in the LIGO Hanford (Livingston) detector. The measured properties are in full agreement with theoretical predictions. These findings establish a new observational channel to directly measure frame-dragging effects in black hole ergospheres and explore (near-)horizon physics in dynamical, strong-gravity regimes.

Author: MA, Sizheng (Perimeter Institute)

Presenter: MA, Sizheng (Perimeter Institute)

Session Classification: Saturday Afternoon Session 1